Regional Mathematical Olympiad-2019 problems and solutions

1. Suppose x is a nonzero real number such that both x^{5} and $20 x+\frac{19}{x}$ are rational numbers. Prove that x is a rational number.

Solution:Since x^{5} is rational, we see that $(20 x)^{5}$ and $(x / 19)^{5}$ are rational numbers. But

$$
(20 x)^{5}-\left(\frac{19}{x}\right)^{5}=\left(20 x-\frac{19}{x}\right)\left((20 x)^{4}+\left(20^{3} \cdot 19\right) x^{2}+20^{2} \cdot 19^{2}+\left(20 \cdot 19^{3}\right) \frac{1}{x^{2}}+\frac{19^{4}}{x^{4}}\right)
$$

Consider

$$
\begin{aligned}
T & =\left((20 x)^{4}+\left(20^{3} \cdot 19\right) x^{2}+20^{2} \cdot 19^{2}+\left(20 \cdot 19^{3}\right) \frac{1}{x^{2}}+\frac{19^{4}}{x^{4}}\right) \\
& =\left((20 x)^{4}+\frac{19^{4}}{x^{4}}\right)+20 \cdot 19\left((20 x)^{2}+\frac{19^{2}}{x^{2}}\right)+\left(20^{2} \cdot 19^{2}\right)
\end{aligned}
$$

Using $20 x+(19) / x$ is rational, we get

$$
(20 x)^{2}+\frac{19^{2}}{x^{2}}=\left(20 x+\frac{19}{x}\right)^{2}-2 \cdot 20 \cdot 19
$$

is rational. This leads to

$$
(20 x)^{4}+\frac{19^{4}}{x^{4}}=\left((20 x)^{2}+\frac{19^{2}}{x^{2}}\right)^{2}-2 \cdot 20^{2} \cdot 19^{2}
$$

is also rational. Thus T is a rational number and $T \neq 0$. We conclude that $20 x-(19 / x)$ is a rational number. This combined with the given condition that $20 x+(19 / x)$ is rational shows $2 \cdot 20 \cdot x$ is rational. Therefore x is rational.
2. Let $A B C$ be a triangle with circumcircle Ω and let G be the centroid of triangle $A B C$. Extend $A G$, $B G$ and $C G$ to meet the circle Ω again in A_{1}, B_{1} and C_{1}, respectively. Suppose $\angle B A C=\angle A_{1} B_{1} C_{1}$, $\angle A B C=\angle A_{1} C_{1} B_{1}$ and $\angle A C B=\angle B_{1} A_{1} C_{1}$. Prove that $A B C$ and $A_{1} B_{1} C_{1}$ are equilateral triangles.

Solution:

Let $\angle B A A_{1}=\alpha$ and $\angle A_{1} A C=\beta$. Then $\angle B B_{1} A_{1}=\alpha$. Using that angles at A and B_{1} are same, we get $\angle B B_{1} C_{1}=\beta$. Then $\angle C_{1} C B=\beta$. If $\angle A C C_{1}=\gamma$, we see that $\angle C_{1} A_{1} A=\gamma$. Therefore $\angle A A_{1} B_{1}=\beta$. Similarly, we see that $\angle B_{1} B A=\angle A_{1} C_{1} C=\beta$ and $\angle B_{1} B C=\angle B_{1} C_{1} C=\delta$.
Since $\angle F B G=\angle B C G=\beta$, it follows that $F B$ is tangent to the circumcircle of $\triangle B G C$ at B. Therefore $F B^{2}=F G \cdot F C$. Since $F A=F B$, we get $F A^{2}=F G \cdot F C$. This implies that $F A$ is tangent to the circumcircle of of $\triangle A G C$ at A. Therefore $\alpha=\angle G A F=\angle G C A=\gamma$. A similar analysis gives $\alpha=\delta$.
It follows that all the angles of $\triangle A B C$ are equal and all the angles of $\triangle A_{1} B_{1} C_{1}$ are equal. Hence $A B C$ and $A_{1} B_{1} C_{1}$ are equilateral triangles.
3. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
\frac{a}{a^{2}+b^{3}+c^{3}}+\frac{b}{b^{2}+c^{3}+a^{3}}+\frac{c}{c^{2}+a^{3}+b^{3}} \leq \frac{1}{5 a b c} .
$$

Solution:Observe that

$$
a^{2}+b^{3}+c^{3}=a^{2}(a+b+c)+b^{3}+c^{3}=\left(a^{3}+b^{3}+c^{3}\right)+a^{2}(b+c) \geq 3 a b c+a^{2} b+a^{2} c
$$

Hence

$$
\frac{a}{a^{2}+b^{3}+c^{3}} \leq \frac{1}{3 b c+a b+a c}
$$

Using AM-HM inequality, we also have

$$
\frac{3}{b c}+\frac{1}{c a}+\frac{1}{a b} \geq \frac{25}{3 b c+c a+a b}
$$

Thus we get
Similarly, we get

$$
\frac{b}{b^{2}+c^{3}+a^{3}} \leq \frac{1}{25}\left(\frac{3}{c a}+\frac{1}{a b}+\frac{1}{b c}\right)
$$

and

$$
\frac{c}{c^{2}+a^{3}+b^{3}} \leq \frac{1}{25}\left(\frac{3}{a b}+\frac{1}{b c}+\frac{1}{c a}\right)
$$

Adding, we get

$$
\begin{aligned}
\frac{a}{a^{2}+b^{3}+c^{3}}+\frac{b}{b^{2}+c^{3}+a^{3}}+\frac{c}{c^{2}+a^{3}+b^{3}} & \leq \frac{5}{25}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}\right) \\
& =\frac{1}{5 a b c}
\end{aligned}
$$

4. Consider the following 3×2 array formed by using the numbers $1,2,3,4,5,6$:

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)=\left(\begin{array}{ll}
1 & 6 \\
2 & 5 \\
3 & 4
\end{array}\right)
$$

Observe that all row sums are equal, but the sum of the squares is not the same for each row. Extend the above array to a $3 \times k$ array $\left(a_{i j}\right)_{3 \times k}$ for a suitable k, adding more columns, using the numbers $7,8,9, \ldots, 3 k$ such that

$$
\sum_{j=1}^{k} a_{1 j}=\sum_{j=1}^{k} a_{2 j}=\sum_{j=1}^{k} a_{3 j} \quad \text { and } \quad \sum_{j=1}^{k}\left(a_{1 j}\right)^{2}=\sum_{j=1}^{k}\left(a_{2 j}\right)^{2}=\sum_{j=1}^{k}\left(a_{3 j}\right)^{2}
$$

Solution:Consider the following extension:

$$
\left(\begin{array}{llllll}
1 & 6 & 3+6 & 4+6 & 2+(2 \cdot 6) & 5+(2 \cdot 6) \\
2 & 5 & 1+6 & 6+6 & 3+(2 \cdot 6) & 4+(2 \cdot 6) \\
3 & 4 & 2+6 & 5+6 & 1+(2 \cdot 6) & 6+(2 \cdot 6)
\end{array}\right)
$$

of

$$
\left(\begin{array}{ll}
1 & 6 \\
2 & 5 \\
3 & 4
\end{array}\right)
$$

This reduces to

$$
\left(\begin{array}{llllll}
1 & 6 & 9 & 10 & 14 & 17 \\
2 & 5 & 7 & 12 & 15 & 16 \\
3 & 4 & 8 & 11 & 13 & 18
\end{array}\right)
$$

Observe

$$
\begin{array}{ll}
1+6+9+10+14+17=57 ; & 1^{2}+6^{2}+9^{2}+10^{2}+14^{2}+17^{2}=703 \\
2+5+7+12+15+16=57 ; & 2^{2}+5^{2}+7^{2}+12^{2}+15^{2}+16^{2}=703 \\
3+4+8+11+13+18 \equiv 57 ; & 3^{2}+4^{2}+8^{2}+11^{2}+13^{2}+18^{2}=703
\end{array}
$$

Thus, in the new array, all row sums are equal and the sum of the squares of entries in each row are the same. Here $k=6$ and we have added numbers from 7 to 18 .
5. In a triangle $A B C$, let H be the orthocenter, and let D, E, F be the feet of altitudes from A, B, C to the opposite sides, respectively. Let L, M, N be midpoints of segments $A H, E F, B C$, respectively. Let X, Y be feet of altitudes from L, N on to the line $D F$. Prove that $X M$ is perpendicular to $M Y$.

Solution:Observe that $A F H$ and $H E A$ are right-angled triangles and L is the mid-point of $A H$. Hence $L F=L A=L E$. Similarly, considering the right triangles $B F C$ and $B E C$, we get $N F=$ $N E$. Since M is the mid-point of $F E$ it follows that $\angle L M F=\angle N M F=90^{\circ}$ and L, M, N are collinear. Since $L Y$ and $N X$ are perpendiculars to $X Y$, we conclude that $Y F M L$ and $F X N M$ are cyclic quadrilaterals. Thus

$$
\angle F L M=\angle F Y M, \quad \text { and } \quad \angle F X M=\angle F N M
$$

We also observe that $C F B$ is a right triangle and N is the mid-point of $B C$. Hence $N F=N C$. We get

$$
\angle N F C=\angle N C F=90^{\circ}-\angle B .
$$

Similarly, $L F=L A$ gives

$$
\angle L F A=\angle L A F=90^{\circ}-\angle B
$$

We obtain
$\angle L F N=\angle L F C+\angle N F C=\angle L F C+90-\angle B=\angle L F C+\angle L F A=\angle A F C=90^{\circ}$.
In triangles $Y M X$ and $L F N$, we have

$$
\angle X Y M=\angle F Y M=\angle F L M=\angle F L N
$$

and

$$
\angle Y X M=\angle F X M=\angle F N M=\angle F N L
$$

It follows that $\angle Y M X=\angle L F N=90^{\circ}$. Therefore $Y M \perp M X$.
6. Suppose 91 distinct positive integers greater than 1 are given such that there are at least 456 pairs among them which are relatively prime. Show that one can find four integers a, b, c, d among them such that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(c, d)=\operatorname{gcd}(d, a)=1$.

Solution:Let the given integers be $a_{1}, a_{2}, \ldots, a_{91}$. Take a 91×91 grid and color the cell at (i, j) black if $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$. Then at least $2 \times 456=912$ cells are colored black. If d_{i} is the number of
black cells in the i th column, then $\sum d_{i} \geq 912$. Now,

$$
\begin{aligned}
\sum_{1}^{91}\binom{d_{i}}{2} & \geq \frac{1}{2}\left[\frac{1}{91}\left(\sum_{i=1}^{91} d_{i}\right)^{2}-\sum_{i=1}^{91} d_{i}\right] \\
& =\frac{1}{2 \times 91}\left(\sum_{i=1}^{91} d_{i}\right)\left(\sum_{i=1}^{91} d_{i}-91\right) \\
& \geq \frac{1}{2 \times 91} \times 2 \times 456 \times(2 \times 456-91) \\
& >\binom{91}{2}
\end{aligned}
$$

Since there are only $\binom{91}{2}$ distinct pairs of columns, there must be at least one pair of rows (u, v) that occur with two distinct columns s, t. Thus $(u, s),(u, t),(v, s)$ and (v, t) are all black. Thus if the integers corresponding to the columns u, v, s, t are a, c, b, d respectively, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=$ $\operatorname{gcd}(c, d)=\operatorname{gcd}(d, a)=1$.
https://gofacademy.in

