Regional Mathematical Olympiad-2018

Solutions

1. Let $A B C$ be a triangle with integer sides in which $A B<A C$. Let the tangent to the circumcircle of triangle $A B C$ at A intersect the line $B C$ at D. Suppose $A D$ is also an integer. Prove that $\operatorname{gcd}(A B, A C)>1$.

Solution: We may assume that B lies between C and D. Let $A B=c, B C=a$ and $C A=b$. Then $b>c$. Let $B D=x$ and $A D=y$. Observe thast $\angle D A B=\angle D C A$. Hence $\triangle D A B \sim \triangle D C A$. We get

$$
\frac{x}{y}=\frac{c}{b}=\frac{y}{x+a}
$$

Therefore $x b=y c$ and $b y=c(x+a)$. Eliminating x, we get $y=a b c /\left(b^{2}-c^{2}\right)$.
Suppose $\operatorname{gcd}(b, c)=1$. Then $\operatorname{gcd}\left(b, b^{2}-c^{2}\right)=1=\operatorname{gcd}\left(c, b^{2}-c^{2}\right)$. Since y is an integer, $b^{2}-c^{2}$ divides a. Therefore $b+c$ divides a. Hence

$$
a \geq b+c
$$

This contradicts triangle inequality. We conclude that $\operatorname{gcd}(b, c)>1$.
2. Let n be a natural number. Find all real numbers x satsfying the equation

$$
\begin{aligned}
& \text { Solution: Observe that } x \neq 0 \text {. We also have }
\end{aligned}
$$

$$
\begin{aligned}
\frac{n(n+1)}{4}=\left|\sum_{k=1}^{n} \frac{k x^{k}}{1+x^{2 k}}\right| & \leq \sum_{k=1}^{n} \frac{k|x|^{k}}{1+x^{2 k}} \\
& =\sum_{k=1}^{n} \frac{k}{\frac{1}{|x|^{k}}+|x|^{k}} \\
& \leq \sum_{k=1}^{n} \frac{k}{2}=\frac{n(n+1)}{4}
\end{aligned}
$$

Hence equality holds every where. It follows that $x=|x|$ and $|x|=1 /|x|$. We conclude that $x=1$ is the unique solution to the equation.
3. For a rational number r, its period is the length of the smallest repeating block in its decimal expansion. For example, the number $r=0.123123123 \cdots$ has period 3 . If S denotes the set of all rational numbers r of the form $r=0 . \overline{a b c d e f g h}$ having period 8 , find the sum of all the elements of S.

Solution: Let us first count the number of elements in S. There are 10^{8} ways of choosing a block of length 8 . Of these, we shoud not count the blocks of the form $a b c d a b c d$, $a b a b a b a b$, and aaaaaaaa . There are 10^{4} blocks of the form $a b c d a b c d$. They include blocks of the form $a b a b a b a b$ and aaaaaaaa. Hence the blocks of length exactly 8 is $10^{8}-10^{4}=99990000$.

For each block $a b c d e f g h$ consider the block $a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime} g^{\prime} h^{\prime}$ where $x^{\prime}=9-x$. Observe that whenever $0 . \overline{a b c d e f g h}$ is in S, the rational number $0 . \overline{a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime} g^{\prime} h^{\prime}}$ is also in S. Thus every element $0 . \overline{a b c d e f g h}$ of S can be uniquely paired with a distinct element $0 . \overline{a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime} g^{\prime} h^{\prime}}$ of S. We also observe that

$$
0 . \overline{a b c d e f g h}+0 . \overline{a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime} g^{\prime} h^{\prime}}=0 . \overline{99999999}=1 .
$$

Hence the sum of elements in S is

$$
\frac{99990000}{2}=49995000
$$

4. Let E denote the set of 25 points (m, n) in the xy-plane, where m, n are natural numbers, $1 \leq m \leq 5$, $1 \leq n \leq 5$. Suppose the points of E are arbitrarily coloured using two colours, red and blue. Show that there always exist four points in the set E of the form $(a, b),(a+k, b),(a+k, b+k),(a, b+k)$ for some positive integer k such that at least three of these four points have the same colour. (That is, there always exist four points in the set E which form the vertices of a square and having at least three points of the same colour.)

Solution: Name the points from bottom row to top (and from left to right) as $A_{j}, B_{j}, C_{j}, D_{j}, E_{j}$, $1 \leq j \leq 5$.

Note that among 5 points $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$, there are at least 3 points of the same colour, say, red. (This folllows from pigeonhole principle.) We consider several cases: (the argument holds irrespective of the colour assigned to the other two points.) / O C.
(I) Take three adjacent points having the same colour. (e.g. A_{1}, B_{1}, C_{1} or B_{1}, C_{1}, D_{1}.) The argument is similar in both the cases. If A_{1}, B_{1}, C_{1} are red then A_{2}, B_{2}, C_{2} are all blue;
 otherwise we get a square having three red vertices. The same reasoning shows that A_{3}, B_{3}, C_{3} are all red. Now $A_{1}, C_{1}, A_{3}, C_{3}$ have all red vertices.
(II) Three alternate points A_{1}, C_{1}, E_{1} which are red: Then A_{3}, C_{3}, E_{3} have to be blue; otherwise, we get a square with three red vertices. Same reasoning shows that A_{5}, C_{5}, E_{5} are red. Therefore we have $A_{1}, E_{1}, A_{5}, E_{5}$ have red colour.
(III) Only two adjacent points having red colour: There are three sub cases.
(a) A_{1}, B_{1}, D_{1} red: In this case A_{2}, B_{2} are blue and therefore A_{3}, B_{3} are red. But then B_{1}, D_{1}, B_{3} are red vertices of a square.
(b) B_{1}, C_{1}, E_{1} are red. This is similar to case (a).
(c) A_{1}, B_{1}, E_{1} are red. We successively have A_{2}, B_{2} blue; A_{3}, B_{3} red; A_{4}, B_{4} blue; A_{5}, B_{5} red. Now A_{1}, E_{1}, A_{5} are the red vertices of a square.
These are the only essential cases and all other reduce to one of these cases.
5. Find all natural numbers n such that $1+[\sqrt{2 n}]$ divides $2 n$. (For any real number $x,[x]$ denotes the largest integer not exceeding x.)

Solution: Let $[\sqrt{2 n}]=k$. We observe that $x-1<[x] \leq x$. Hence

$$
\sqrt{2 n}<1+k \leq 1+\sqrt{2 n}
$$

Divisibility gives $(1+k) d=2 n$ for some positive integer d. Therefore we obtain

$$
\sqrt{2 n}<\frac{2 n}{d} \leq 1+\sqrt{2 n}
$$

The first inequality gives $d<\sqrt{2 n}<1+k$. But then

$$
d=\frac{2 n}{1+k}=\frac{(\sqrt{2 n})^{2}}{1+k} \geq \frac{k^{2}}{1+k}=(k-1)+\frac{1}{k+1}>k-1 .
$$

We thus obtain $k-1<d<k+1$. Since d is an integer, it follows that $d=k$. This implies that $n=k(k+1) / 2$. Thus n is a triangular number. It is easy to check that every triangular number is a solution.
6. Let $A B C$ be an acute-angled triangle with $A B<A C$. Let I be the incentre of triangle $A B C$, and let D, E, F be the points at which its incircle touches the sides $B C, C A, A B$, respectively. Let $B I$, $C I$ meet the line $E F$ at Y, X, respectively. Further assume that both X and Y are outside the triangle $A B C$. Prove that
(i) B, C, Y, X are concyclic; and
(ii) I is also the incentre of triangle $D Y X$.

Solution:

(a) We first show that $B I F X$ is a cyclic quadrilateral. Since $\angle B I C=90^{\circ}+(A / 2)$, we see that $\angle B I X=90^{\circ}-(A / 2)$. On the otherhand $F A E$ is an isosceles triangle so that $\angle A F E=90^{\circ}-(A / 2)$. But $\angle A F E=\angle B F X$ as they are vertically opposite angles. Therefore $\angle B F X=90^{\circ}-(A / 2)=$ $\angle B I X$. It follows that $B I F X$ is a cyclic quadrilateral. Therefore $\angle B X I=\angle B F I$. But $\angle B F I=$ 90° since $I F \perp A B$. We obtain $\angle B X C=\angle B X I=90^{\circ}$.
A similar consideration shows that $\angle B Y C=90^{\circ}$. Therefore $\angle B X C=\angle B Y C$ which implies that $B C Y X$ is a cyclic quadrilateral. 0 ?
(b) We also observe that $B D I X$ is a cyclic quadrilateral as $\angle B X I=90^{\circ}=\angle B D I$ and therefore $\angle B X I+\angle B D I=180^{\circ}$. This gives $\angle D X I=\angle D B I=B / 2$. Now the concyclicity of B, I, F, X shows that $\angle I X F=\angle I B F=$ $B / 2$. Hence $\angle D X I=\angle I X F$. Hence $X I$ bisects $\angle D X Y$. Similarly, we can show that $Y I$ bisects $\angle D Y X$. It follows that I is the incentre of $\triangle D Y X$ as well.

