Regional Mathematical Olympiad-2017

Solutions

1. Let $A O B$ be a given angle less than 180° and let P be an interior point of the angular region determined by $\angle A O B$. Show, with proof, how to construct, using only ruler and compasses, a line segment $C D$ passing through P such that C lies on the ray $O A$ and D lies on the ray $O B$, and $C P: P D=1: 2$.

Solution: Draw a line parallel to $O A$ through P. Let it intersect $O B$ in M. Using compasses, draw an arc of a circle with centre M and radius $M O$ to cut $O B$ in $L, L \neq O$. Again with L as centre and with the same radius $O M$ draw one more arc of a circle to cut $O B$ in $D, D \neq M$. Join $D P$ and extend it to meet $O A$ in C. Then $C D$ is the required line segment such that $C P: P D=1: 2$. This follows from similar triangles $O C D$ and $M P D$.

2. Show that the equation

$$
a^{3}+(a+1)^{3}+(a+2)^{3}+(a+3)^{3}+(a+4)^{3}+(a+5)^{3}+(a+6)^{3}=b^{4}+(b+1)^{4}
$$

has no solutions in integers a, b.
Solution: We use divisibility argument by 7. Observe that the remainders of seven consecutive cubes modulo 7 are $0,1,1,6,1,6,6$ in some (cyclic) order. Hence the sum of seven consecutive cubes is 0 modulo 7 . On the other hand the remainders of two consecutive fourth powers modulo 7 is one of the sets $\{0,1\},\{1,2\},\{2,4\},\{4,4\}$. Hence the sum of two fourth powers is never divisible by 7 . It follows that the given equation has no solution in integers.
3. Let $P(x)=x^{2}+\frac{1}{2} x+b$ and $Q(x)=x^{2}+c x+d$ be two polynomials with real coefficients such that $P(x) Q(x)=Q(P(x))$ for all real x. Find all the real roots of $P(Q(x))=0$.

Solution: Observe that

$$
P(x) Q(x)=x^{4}+\left(c+\frac{1}{2}\right) x^{3}+\left(b+\frac{c}{2}+d\right) x^{2}+\left(\frac{d}{2}+b c\right) x+b d
$$

Similarly,

$$
\begin{aligned}
Q(P(x)) & =\left(x^{2}+\frac{1}{2} x+b\right)^{2}+c\left(x^{2}+\frac{1}{2} x+b\right)+d \\
& =x^{4}+x^{3}+\left(2 b+\frac{1}{4}+c\right) x^{2}+\left(b+\frac{c}{2}\right) x+b^{2}+b c+d
\end{aligned}
$$

Equating coefficients of corresponding powers of x, we obtain

$$
c+\frac{1}{2}=1, \quad b+\frac{c}{2}+d=2 b+\frac{1}{4}+c, \quad \frac{d}{2}+b c=b+\frac{c}{2}, \quad b^{2}+b c+d=b d .
$$

Solving these, we obtain

$$
c=\frac{1}{2}, d=0, b=\frac{-1}{2} .
$$

Thus the polynomials are

Therefore,

$$
\begin{aligned}
P(Q(x)) & =\left(x^{2}+\frac{1}{2} x\right)^{2}+\frac{1}{2}\left(x^{2}+\frac{1}{2} x\right)-\frac{1}{2} \\
& =x^{4}+x^{3}+\frac{3}{4} x^{2}+\frac{1}{4} x-\frac{1}{2}
\end{aligned}
$$

It is easy to see that

$$
P(Q(-1))=0, \quad P(Q(1 / 2))=0
$$

Thus $(x+1)$ and $(x-1 / 2)$ are factors of $P(Q(x))$. The remaining factor is

$$
h(x)=x^{2}+\frac{1}{2} x+1
$$

The discriminant of $h(x)$ is $D=(1 / 4)-4<0$. Hence $h(x)=0$ has no real roots. Therefore the only real roots of $P(Q(x))=0$ are -1 and $1 / 2$.
4. Consider n^{2} unit squares in the $x y$-plane centred at point (i, j) with integer coordinates, $1 \leq i \leq n, 1 \leq j \leq n$. It is required to colour each unit square in such a way that whenever $1 \leq i<j \leq n$ and $1 \leq k<l \leq n$, the three squares with centres at $(i, k),(j, k),(j, l)$ have distinct colours. What is the least possible number of colours needed?

Solution: We first show that at least $2 n-1$ colours are needed. Observe that squares with centres $(i, 1)$ must all have diffrent colours for $1 \leq i \leq n$; let us call them $C_{1}, C_{2}, \ldots, C_{n}$. Besides, the squares with centres (n, j), for $2 \leq j \leq n$ must have different colours and these must be different from $C_{1}, C_{2}, \ldots, C_{n}$. Thus we need at least $n+(n-1)=2 n-1$ colours. The following diagram shows that $2 n-1$ colours will suffice.

5. Let Ω be a circle with a chord $A B$ which is not a diameter. Let Γ_{1} be a circle on one side of $A B$ such that it is tangent to $A B$ at C and internally tangent to Ω at D. Likewise, let Γ_{2} be a circle on the other side of $A B$ such that it is tangent to $A B$ at E and internally tangent to Ω at F. Suppose the line $D C$ intersects Ω at $X \neq D$ and the line $F E$ intersects Ω at $Y \neq F$. Prove that $X Y$ is a diameter of Ω.

Solution: Draw the tangent $P Q$ at D such that D is between P and Q. Join D to A, B and C. Let $L=D A \cap \Gamma_{1}$ and $M=D B \cap \Gamma_{1}$. Join C to L and M. Observe that

$$
\begin{equation*}
\angle A D P=\angle L M D=\angle A B D . \tag{1}
\end{equation*}
$$

Therefore $L M$ is parallel to $A B$ and hence $\angle L M C=\angle M C B$ (alternate angles). Again observe that

$$
\begin{equation*}
\angle A D C=\angle L D C=\angle L M C=\angle M C B=\angle M D C=\angle B D C . \tag{2}
\end{equation*}
$$

Thus $C D$ bisects $\angle A D B$. Hence X is the midpoint of the arc $A B$ not containing D. Similarly Y is the midpoint of the arc $A B$ not containing F. Thus the arc $X Y$ is half of the sum of two arcs that together constitute the circumference of Ω and hence it is a diameter.

6. Let x, y, z be real numbers, each greater than 1. Prove that

$$
\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1} \leq \frac{x-1}{y-1}+\frac{y-1}{z-1}+\frac{z-1}{x-1}
$$

Solution: We may assume that $x=\max \{x, y, z\}$. There are two cases: $x \geq y \geq z$ and $x \geq z \geq y$. We consider both these cases. The inequality is equivalent to

$$
\left\{\frac{x-1}{y-1}-\frac{x+1}{y+1}\right\}+\left\{\frac{y-1}{z-1}-\frac{y+1}{z+1}\right\}+\left\{\frac{z-1}{x-1}-\frac{z+1}{x+1}\right\} \geq 0
$$

This is further equivalent to

$$
\frac{x-y}{y^{2}-1}+\frac{y-z}{z^{2}-1}+\frac{z-x}{x^{2}-1} \geq 0
$$

Suppose $x \geq y \geq z$. We write

$$
\frac{x-y}{y^{2}-1}+\frac{y-z}{z^{2}-1}+\frac{z-x}{x^{2}-1}=\frac{x-y}{y^{2}-1}+\frac{y-z}{z^{2}-1}+\frac{z-y+y-x}{x^{2}-1} .
$$

This reduces to

$$
(x-y) \frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}-1\right)\left(y^{2}-1\right)}+(y-z) \frac{\left(x^{2}-z^{2}\right)}{\left(x^{2}-1\right)\left(z^{2}-1\right)}
$$

Since $x \geq y$ and $x \geq z$, this sum is nonnegative.
Suppose $x \geq z \geq y$. We write

$$
\frac{x-y}{y^{2}-1}+\frac{y-z}{z^{2}-1}+\frac{z-x}{x^{2}-1}=\frac{x-z+z-y}{y^{2}-1}+\frac{y-z}{z^{2}-1}+\frac{z-x}{x^{2}-1}
$$

This reduces to

$$
(x-z) \frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}-1\right)\left(y^{2}-1\right)}+(z-y) \frac{\left(z^{2}-y^{2}\right)}{\left(y^{2}-1\right)\left(z^{2}-1\right)}
$$

Since $x \geq z$ and $z \geq y$, this sum is nonnegative.
Thus

$$
\frac{x-y}{y^{2}-1}+\frac{y-z}{z^{2}-1}+\frac{z-x}{x^{2}-1} \geq 0
$$

in both the cases. This completes the proof.

$$
-0-
$$

https://gofacademy.in

