32"d Indian National Mathematical Olympiad-2017

Problems and Solutions

1. In the given figure, ABCD is a square paper. D'
It is folded along E'F such that A goes to a D C
point A’ # C, B on the side BC and D goes
to D’. The line A’D’ cuts CD in G. Show

that the inradius of the triangle GC A’ is the A
sum of the inradii of the triangles GD'F and A ‘E B
A'BE.

Solution: Observe that the triangles GCA’ and A’BE are similar to the triangle GD'F. If
GF =u, GD' =v and D'F = w, then we have

AG=pu,CG =pv,AC =pw, A'E=qu, BE=quw,A'B = qu.

If r is the inradius of AGD’F, then pr and gr are respectively the inradii of triangles GC' A’
and A’BE. We have to show that pr = r + qr. We also observe that

AE =EA", DF=FD'.

Therefore
pPW+qUu =qw +qu =w + U+ pv =0 + pu.

The last two equalities give (p—1)(u—v) = w. The first two equalities give (p—q)w = g(u—v).

Hence
p—q u—v 1

q w p-1
This simplifies to p(p—g—1) = 0. Since p # 0, we get p = g+ 1. This implies that pr = gr+r.

2. Suppose n > 0 is an integer and all the roots of 3 + ax + 4 — (2 x 2016™) = 0 are integers.
Find all possible values of a.

Solution 1: Let u,v,w be the roots of 2% + ax + 4 — (2 x 2016™) = 0. Then v+ v +w =0
and vvw = —4 + (2 x 2016™). Therefore we obtain

wo(u+v) =4 — (2 x 2016™).
Suppose n > 1. Then we see that uv(u + v) = 4 (mod 2016™). Therefore uv(u + v) = 1
(mod 3) and wv(u +v) =1 (mod 9). This implies that u = 2 (mod 3) and v = 2 (mod 3).
This shows that modulo 9 the pair (u,v) could be any one of the following:
(2,2),(2,5),(2,8),(5,2),(5,5), (5,8), (8,2), (8,5), (8,8).

In each case it is easy to check that uv(u +v) # 4 (mod 9). Hence n = 0 and uv(u + v) = 2.
It follows that (u,v) = (1,1), (1,—2) or (=2,1). Thus

a=wu+vw+wu=uw — (u+v)?=-3

for every pair (u,v).



Solution 2: Let a,b,c € Z be the roots of the given equation for some n € Ny. By Vieta
Theorem, we know that
a+b+c=0

ab+bc+ca =«
abc =2 x 2016™ — 4
If possible, let us have n > 1. Since 7|2016, we have that

Tlabc +4 = 7|3(abc+4) = 7|3abc+ 12 = 7|3abc + 5

Since we have a + b+ ¢ = 0, we get that 3abc = a® + b® + ¢®. Substituting this in the earlier
expression, we get that
@+ +c*+5=0 (mod7)

Consider below, a table calculating the residues of cubes modulo 7.

x |0[1]2] 3 |4] 5 | 6
2loj1]1]-1]1]-1]-1

Hence, we know that if x € N, then we have 2 = 0,1, —1 (mod 7). Since a3 + b% + ¢3 = 2
(mod 7), we see that we must have one of the numbers divisible by 7 and the other two
numbers, when cubed, must leave 1 as remainder modulo 7. Without of generality, let us

assume that
a=0 (mod7), v*,c*=1 (mod7)

Hence, we have b,c =1,2,4 (mod 7). We will consider all possible values of b+ ¢ modulo 7.
Since the expression is symmetric in b, ¢, modulo 7, we will consider b < c.

b 11111212
c 1
b+c| 23|54 |6]|1

[\
=~
|

We see that, in all the above cases, we get 7)b+c. But this is a contradiction, since 7|a+b+c¢
and 7|a together imply that 7|b + ¢. Hence, we cannot have n > 1. Hence, the only possible
value is n = 0. Substituting this value in the original equation, the equation becomes

2 t+ar+2=0

Solving the equations a + b+ ¢ = 0 and abc = —2 in integers, we see that the only possible
solutions (a, b, ¢) are permutations of (1,1, —2). In case of any permutation, « = —3. Substi-
tuting this value of a back in the equation, we see that we indeed, get integer roots. Hence,
the only possible value for a is —3.

. Find the number of triples (z,a,b) where z is a real number and a,b belong to the set
{1,2,3,4,5,6,7,8,9} such that
22 —a{z} +b=0,

where {z} denotes the fractional part of the real number z. (For example {1.1} = 0.1 =

{~0.9})



Solution: Let us write z = n + f where n = [z] and f = {z}. Then
P+@2n—a)f+n?+b=0. (1)

Observe that the product of the roots of (1) is n? +b > 1. If this equation has to have a
solution 0 < f < 1, the larger root of (1) is greater 1. We conclude that the equation (1) has
a real root less than 1 only if P(1) < 0 where P(y) = y? + (2n — a)y + n? + 2b. This gives

14+2n—a+n?+2b<0.

Therefore we have (n +1)2+b < a. If n > 2, then (n+1)2+b > 10 > a. Hence n < 1. If
n < —4, then again (n + 1)2 +b > 10 > a. Thus we have the range for n: —3,-2,—1,0,1.
If n = -3 orn =1, we have (n + 1)2 = 4. Thus we must have 4 + b < a. If a = 9, we
must have b = 4,3,2,1 giving 4 values. For a = 8, we must have b = 3,2, 1 giving 3 values.
Similarly, for a = 7 we get 2 values of b and a = 6 leads to 1 value of b. In each case we get a
real value of f < 1 and this leads to a solution for z. Thus we get totally 2(44+3+2+1) = 20
values of the triple (z,a, b).

For n = —2 and n = 0, we have (n + 1)?> = 1. Hence we require 1 + b < a. We again count
pairs (a,b) such that a — b > 1. For a =9, we get 7 values of b; for a = 8 we get 6 values of
b and so on. Thus we get 2(7+6+5+ 4+ 3 + 2+ 1) = 56 values for the triple (x,a,b).
Suppose n = —1 so that (n + 1)? = 0. In this case we require b < a. We get 8 +7+6 + 5+
44342+ 1 = 36 values for the triple (z,a,b).

Thus the total number of triples (x,a,b) is 20 + 56 + 36 = 112.

. Let ABCDE be a convex pentagon in which /A = /B = /C = ZD = 120° and whose side
lengths are 5 consecutive integers in some order. Find all possible values of AB + BC + CD.

Solution 1: Let AB = a, BC =b, and CD = ¢. By symmetry, we may assume that ¢ < a.
We show that DE =a+band EA=b+c.

Draw a line parallel to BC' through D. Extend EA to meet this line at F. Draw a line
parallel to C'D through B and let it intersect DF in G. Let AB intersect DF in H. We have
LFDE = 60° and ZFE = 60°. Hence EFD is an equilateral triangle. Similarly AFH and
BGH are also equilateral triangles. Hence HG = GB = c¢. Moreover, DG = b. Therefore
HD =b+c But HD = AE since FH = FA and FD = FE. Also AH = a— BH =
a—BG=a—c Hence ED=EF =FA+AF =b+c+AH=(b+¢)+ (a—c)=b+a.

We have five possibilities:
(b<ec<a<b+cec<a+d;



e<b<a<btce<atby
e<a<b<b+c<a+b;
Hb<e<bt+e<a<a+d;
5)e<b<b+c<a<a+b.

In (1), we see that ¢ < a < b+ ¢ are three consecutive integers provided b = 2. Hence we
get ¢ =3 and a = 4. In this case b+ ¢ =5 and a + b = 6 so that we have five consecutive
integrs 2,3,4,5,6 as side lengths. In (2), b < a < b+ ¢ form three consecutive integrs only
when ¢ = 2. Hence b = 3, a = 4. But then b+ ¢ =5 and a +b = 7. Thus the side lengths
are 2,3,4,6,7 which are not consecutive integers. In case (3), b < b+ ¢ are two consecutive
integrs so that ¢ = 1. Hence a = 2 and b = 3. We get b+ c =4 and a + b = 5 so that the
consecutive integers 1,2,3,4,5 form the side lengths. In case (4), we have ¢ < b+ ¢ as two
consecutive integers and hence b = 1. Therefore c=2,b+c¢=3, a =4 and a + b = 5 which
is admissible. Finally, in case (5) we have b < b+ ¢ as two consecutive integers, so that ¢ = 1.
Thus b=2,b+c=3,a=4and a+ b= 6. We do not get consecutive integers.

Therefore the only possibilities are (a,b,c) = (4,2,3), (2,3,1) and (4, 1,2). This shows that
a+b+c=9,6 or 7. Thus there are three possible sums AB 4+ BC + C'A, namely, 6, 7 or 9.

Solution 2: As in the earlier solution, ED =d =a+ b and FA = e = b+ ¢. Let the sides
bex—2,z—1,z,x+1,x+2. Then x > 3. We also have x +2 > x —1+x — 2 so that = < 5.
Thus = 3,4 or 5. If x = 5, the sides are {3,4,5,6,7} and here we do not have two pairs
which add to a number in the set. Hence x = 3 or 4 and we get the sets as {1,2,3,4,5} or
{2,3,4,5,6}. With the set {1,2,3,4,5} we get

(a,b,c,d,e) =(2,3,1,5,4),(4,1,2,5,3).

From the set {2,3,4,5,6}, we get (a,b,c,d,e) = (4,2,3,6,5). Thus we see that a+b+c =6,7
or 9.

Solution 3: We use the same notations and we get d = a+band e =b+c. If a > 5, we see
that d — b > 5. But the maximum difference in a set of 5 consecutive integers is 4. Hence
a < 4. Similarly, we see b < 4 and ¢ < 4. Thus we see that a +b+¢ < 2+3+4 = 9.
But a+b+4+c¢c>1+2+4+3 = 6. It follows that a + b+ ¢ = 6,7,8 or 9. If we take
(a,b,c,d,e) = (1,3,2,4,5), we get a + b+ ¢ = 6. Similarly, (a,b,c,d,e) = (2,1,4,3,5)
givesa+b+c =7, For a4+ b+ ¢ = 8, the only we we can get 1 +3 + 4 = 8. Here we cannot
accommodate 2 and consecutiveness is lost. For 9, we can have (a,b,c,d,e) = (3,2,4,5,6)
anda+b+c=9.

. Let ABC be a triangle with ZA = 90° and AB < AC. Let AD be the altitude from A on
to BC'. Let P,@ and I denote respectively the incentres of triangles ABD, AC'D and ABC.
Prove that ATl is perpendicular to PQ and Al = PQ.

Solution: Draw PS || BC and QS | AD.
Then PS@Q is a right-angled triangle with
/ZPSQ = 90°. Observe that PS = r1 4+ 19

and SQ = ro — rq, where r; and ro are the ! 0
inradii of triangles ABD and ACD, respec- P s
tively. We observe that triangles DAB and /w\

DCA are similar to triangle AC'B. B U D TE V &



Hence
c b
rL=—-r, To=-—r,
a a

where r is the inradius of triangle ABC. Thus we get
PS rm+r  b+c

SQ ro—r b—c

On the otherhand AD = h = be/a. We also have BE = ca/(b + ¢) and

vrer2
2_ 2 32 _ —
BD*=c"—h = - 2
Hence BD = ¢?/a. Therefore
ca 2 eb(b—c)

DE = BE — BD = e _dlb=o
b+c a alb+e)

Thus we get
AD b+c PS

DE b—c SQ
Since ZADE = 90° = ZPSQ, we conclude that AADE ~ APSQ. Since AD 1 PS, it
follows that AFE 1 PQ.

We also observe that

PQ*=PS?+5Q% = (ro+1m1)2 + (ra — 1) = 2(r2 + 7).

However 2, g2

2, 2 CHO0 5 o

Ty = Tr =r-.
Hence PQ = +/2r. We also observe that AI = rcosec(A/2) = rcosec(45°) = +/2r. Thus
PQ = Al

Solution 2: In the figure, we have made the construction as mentioned in the hint. Since P, Q)
are the incentres of AABD, NACD, DP, D@ are the internal angle bisectors of ZADB, ZADC
respectively. Since AD is the altitude on the hypotenuse BC' in AABC, we have that
/ZPD@ = 45° + 45° = 90°. It also implies that

ANABC ~ ADBA ~ ADAC

This implies that all corresponding length in the above mentioned triangles have the same
ratio.



In particular,

Al _DP_DQ

BC AB AC

AI? B DP? B DQ? B DP?% + DQ?

~7 BCZ T AB?  AC?  AB?+ AC?

AT? PQ2 .
. BOE = BT by Pythagoras Theorem in AABC, APDQ
= Al = PQ

as required.

For the second, part, we note that from the above relations, we have AABC ~ ADPQ. Let
us take ZACB = 6. Then, we get

/PSD = 180° — (4SPD+ ZSDP)
= 180° — (90° — 6 +45°)
45° 40
This gives us that
/ZARS = 180° — (LASR+ ZSAR)

180° — (LPSD + £LSAC — LIAC)
180° — (45° + 64 90° — 0 — 45°)
90°

as required. Hence, we get that Al = PQ and Al 1 PQ.

Solution 3: We know that the angle bisector of /B passes through P, I which implies that
B, P, I are collinear. Similarly, C, @, I are also collinear. Since [ is the incentre of AABC),
we know that

LA
/ZPIQ = /ZBIC =90° + > = 135°



Join AP, AQ. We know that /BAP = %ZBAD = %ZC’. Also, ZABP = %ZB. Hence by
Exterior Angle Theorem in AABP, we get that

/API = ZABP + /BAP = %(43 +/C) = 45°

Similarly in AADC, we get that LZAQI = 45°. Also, we have

/PAI = /BAI — /BAP = 45° — % 473

. . C
Similarly, we get ZQAI = 47

Now applying Sine Rule in AAPI, we get

mwp Al
sin /PAI ~ sin ZAPI

= [P =+2AI sing

Similarly, applying Sine Rule in AAQI, we get

1Q B Al
sin /PAI ~ sin ZAQI

= IQ = ﬂAIsin%

Applying Cosine Rule in APIQ gives us that

PQ* = IP?4+1Q?>-2-IP -IQcos/PIQ
B B
= 2AJ? <sm2 7+ sin? % +V/2sin 3 sin g)

We will prove that (sin2 g + sin? + \/ism 5 sin ¥ ) = % In any AXY Z, we have that

Zsin2§:172nsin§

cyc

Using this in AABC, and using the fact that ZA = 90°, we get

A B C A C
.24 2D . 27: . oA LD Y
sin 5 + sin 5 + sin 2 1—2sin > sin > sin 5
1 B C B
— §—|—sin25+sin2§:1—\[251I1551n5
B C B C 1
— (sin22+sin22+\/§sin251n2) 5

which was to be proved. Hence we get PQ = Al.

The second part of the problem can be obtained by angle-chasing as outlined in Solution 2.

Solution 4: Observe that ZAPB = ZAQC = 135°. Thus LAPI = ZAQI = 45° (since
B—-—P—1Tand C—-Q —1I). Note ZPAQ = 1/2/A = 45°. Let X = BI N AQ and
Y = CInNAP. Therefore ZAXP =180 — LZAPI — ZPAQ = 90°. Similarly ZAY Q = 90°.
Hence [ is the orthocentre of triangle PAQ. Therefore Al is perpendicular to PQ. Also
Al = 2RPAQ cos 45° = QRPAQ sin 45° = PQ



6. Let n > 1 be an integer and consider the sum

n n n n
— 2’n72k‘3k‘ — on 277,72 .3 27’7,74 . 32 .
v kg (2k> 0)7 T\ 4 *

Show that 2x — 1,2x,2z + 1 form the sides of a triangle whose area and inradius are also
integers.

Solution: Consider the binomial expansion of (2 + v/3)™. It is easy to check that
(2+V3)" =z +yV3,

where y is also an integer. We also have
(2—V3)" =2 —yV3.

Multiplying these two relations, we obtain z? — 3y% = 1.

Since all the terms of the expansion of (2 + 1/3)™ are positive, we see that
2$(2+\/§)”+(2\/§)"2(2"+ <Z>2”2~3+~~> > 4.

Thus « > 2. Hence 22+ 1 < 2z 4 (22 — 1) and therefore 2z — 1,2z,22 4 1 are the sides of a
triangle. By Heron’s formula we have

A? = 3x(z 4+ 1)(2)(z — 1) = 32%(2* — 1) = 929>
Hence A = 3zy which is an integer. Finally, its inradius is
area  3zy

Y,

perimeter 3z

which is also an integer.

Solution 2: We will first show that the numbers 2z,, — 1, 2x,, 22, + 1 form the sides of a
triangle. To show that, it suffices to prove that 2z, — 1 + 2z, > 2z, + 1. If possible, let
the converse hold. Then, we see that we must have 4x,, — 1 < 2z, + 1, which implies that
r, < 1. But we see that even for the smallest value of n = 1, we have that x,, > 1. Hence,
the numbers are indeed sides of a triangle.

Let A, r,, s, denote respectively, the area, inradius and semiperimeter of the triangle with
sides 2z, — 1, 2x,,2x, + 1. By Heron’s Formula for the area of a triangle, we see that

A, = /3xn(xn, — Dan(z, + 1) = 2,/3(x2 — 1)

If possible, let A,, be an integer for all n € N. We see that due to the presence of the first
term (g) 2" we have 3z, Vn € N. Hence, we get that 3|22 — 1. Hence, we can write 22 — 1
as 3m for some m € N. Then, we can also write

A, = 3z,v/m

Note that we have assumed that A, is an integer. Hence, we see that we must have m to be
a perfect square. Consequently, we get that
A, A,

rp= St =20 e
Sn 3T,



Hence, it only remains to show that A, € Z, Vn € N. In other words, it suffices to show
that 3(z2 — 1) is a perfect square for all n € N.

We see that we can write x,, as

1 n\ o pn_2
o= g 2%;(%)2 F3h
- %((2+\/§)”+(2—\/§)”)
3z, -3 = %((2+¢§)2"+(2—¢§)2”+2(2+¢§)”(2—\/§)")—3
= %((2+¢§)2”+(2—¢§)2"—2(2+x/§)"(2—\/§)”)
- (? ((2+\/§)"—(2—\/§)”)>

We are left to show that the quantity obtained in the above equation is an integer. But we
see that if we define

anzg((2+\/§)"—(2—ﬁ)"), Vn e N

the sequence (ax)3>, thus obtained is exactly the solution for the recursion given by
Opto =4an41 —apn, VR €N, a3 =3,a0 =12
Hence, clearly, each a,, is obviously an integer, thus completing the proof.
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