INMO-1998

February 1, 1998

1. In a circle C_1 with centre O, let AB be a chord that is not a diameter. Let M be the midpoint of AB. Take a point T on the circle C_2 with OM as diameter. Let the tangent to C_2 at Tmeet C_1 in P. Show that

$$PA^2 + PB^2 = 4PT^2.$$

- 2. Let a and b be two positive rational numbers such that $\sqrt[3]{a} + \sqrt[3]{b}$ is also a rational number. Prove that $\sqrt[3]{a}$ and $\sqrt[3]{b}$ themselves are rational numbers.
- 3. Let p, q, r, s be four integers such that s is not divisible by 5. If there is an integer a such that $pa^3 + qa^2 + ra + s$ is divisible by 5, prove that there is an integer b such that $sb^3 + rb^2 + qb + p$ is also divisible by 5.
- 4. Suppose ABCD is a cyclic quadrilateral inscribed in a circle of radius one unit. If

$$AB \cdot BC \cdot CD \cdot DA \ge 4,$$

prove that ABCD is a square.

5. Suppose a, b, c are three real numbers such that the quadratic equation

$$x^{2} - (a+b+c)x + (ab+bc+ca) = 0$$

has roots of the form $\alpha \pm i\beta$ where $\alpha > 0$ and $\beta \neq 0$ are real numbers [here $i = \sqrt{-1}$]. Show that

- (i) the numbers a, b, c are all positive;
- (ii) the numbers \sqrt{a} , \sqrt{b} , \sqrt{c} form the sides of a triangle.
- 6. It is desired to choose n integers from the collection of 2n integers, namely, $0, 0, 1, 1, 2, 2, \ldots, n-1, n-1$ such that the average (that is, the arithmetic mean) of these n chosen integers is itself an integer and as minimum as possible. Show that this can be done for each positive integer n and find this minimum average for each n.