INMO-1998

February 1, 1998

1. In a circle C_{1} with centre O, let $A B$ be a chord that is not a diameter. Let M be the midpoint of $A B$. Take a point T on the circle C_{2} with $O M$ as diameter. Let the tangent to C_{2} at T meet C_{1} in P. Show that

$$
P A^{2}+P B^{2}=4 P T^{2}
$$

2. Let a and b be two positive rational numbers such that $\sqrt[3]{a}+\sqrt[3]{b}$ is also a rational number. Prove that $\sqrt[3]{a}$ and $\sqrt[3]{b}$ themselves are rational numbers.
3. Let p, q, r, s be four integers such that s is not divisible by 5 . If there is an integer a such that $p a^{3}+q a^{2}+r a+s$ is divisible by 5 , prove that there is an integer b such that $s b^{3}+r b^{2}+q b+p$ is also divisible by 5 .
4. Suppose $A B C D$ is a cyclic quadrilateral inscribed in a circle of radius one unit. If

$$
A B \cdot B C \cdot C D \cdot D A \geq 4
$$

prove that $A B C D$ is a square.
5. Suppose a, b, c are three real numbers such that the quadratic equation

$$
x^{2}-(a+b+c) x+(a b+b c+c a)=0
$$

has roots of the form $\alpha \pm i \beta$ where $\alpha>0$ and $\beta \neq 0$ are real numbers [here $i=\sqrt{-1}$]. Show that
(i) the numbers a, b, c are all positive;
(ii) the numbers $\sqrt{a}, \sqrt{b}, \sqrt{c}$ form the sides of a triangle.
6. It is desired to choose n integers from the collection of $2 n$ integers, namely, $0,0,1,1,2,2, \ldots, n-$ $1, n-1$ such that the average (that is, the arithmetic mean) of these n chosen integers is itself an integer and as minimum as possible. Show that this can be done for each positive integer n and find this minimum average for each n.

