INMO-1996

February 4, 1996

1. (a) Given any positive integer n, show that there exist distinct positive integers x and y such that $x+j$ divides $y+j$ for $j=1,2,3, \cdots, n$.
(b) If for some positive integers x and $y, x+j$ divides $y+j$ for all positive integers j, prove that $x=y$.
2. Let C_{1} and C_{2} be two concentric circles in the plane with radii R and $3 R$ respectively. Show that the orthocentre of any triangle inscribed in circle C_{1} lies in the interior of circle C_{2}. Conversely, show that also every point in the interior of C_{2} is the orthocentre of some triangle inscribed in C_{1}.
3. Solve the following system of equations for real numbers a, b, c, d, e.

$$
\begin{aligned}
3 a & =(b+c+d)^{3} \\
3 b & =(c+d+e)^{3} \\
3 c & =(d+e+a)^{3} \\
3 d & =(e+a+b)^{3} \\
3 e & =(a+b+c)^{3}
\end{aligned}
$$

4. Let X be a set containing n elements. Find the number of all ordered triples (A, B, C) of subsets of X such that A is a subset of B and B is a proper subset of C.
5. Define a sequence $\left(a_{n}\right)_{n \geq 1}$ by $a_{1}=1, a_{2}=2$ and $a_{n+2}=2 a_{n+1}-a_{n}+2$ for $n \geq 1$. Prove that for any $m, a_{m} a_{m+1}$ is also a term in the sequence.
6. There is a $2 n \times 2 n$ array (matrix) consisting of 0 's and 1 's and there are exactly $3 n$ zeros. Show that it is possible to remove all the zeros by deleting some n rows and some n columns.
[Note: A $m \times n$ array is a rectangular arrangement of $m n$ numbers in which there are m horizontal rows and n vertical columns.]
