INMO-1995

Attempt all questions.

Do not use mathematical tables or calculators.

1. In an acute-angled triangle $A B C, \angle A=30^{\circ}, H$ is the orthocenter and M is the mid-point of $B C$. On the line $H M$, take a point T such that $H M=M T$. Show that $A T=2 B C$.
2. Show that there are infinitely many pairs (a, b) of relatively prime integers (not necessarily positive) such that both quadratic functions

$$
\begin{aligned}
x^{2}+a x+b & =0 \\
\text { and } x^{2}+2 a x+b & =0
\end{aligned}
$$

have integer roots.
3. Show that the number of 3 -element subset $\{a, b, c\}$ of $\{1,2,3, \ldots, 63\}$ with $a+b+c<95$ is less than the number of those with $a+b+c>95$.
4. Let $A B C$ be triangle and a circle Γ^{\prime} be drawn inside the triangle, touching its incircle Γ externally and also touching the two sides $A B$ and $A C$. Show the ratio of the radii of the circles Γ^{\prime} and Γ is equal to

$$
\tan ^{2}\left(\frac{\pi-A}{4}\right)
$$

5. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be n real numbers all greater than 1 and such that $\left|a_{k}-a_{k+1}\right|<1$ for $1 \leq k \leq n-1$. Show that

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{4}}+\ldots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}<2 n-1
$$

6. Find all primes p for which the quotient

$$
\left(2^{p-1}-1\right)
$$

is a square.

