INMO-1994

Time : 4 hours.

Answer as many questions as you possibly can.

1. Let G be the centroid of a triangle $A B C$ in which the angle C is obtuse and $A D$ and $C F$ be the medians from A and C respectively onto the sides $B C$ and $A B$. If the four points B, D, G and F are concyclic, show that

$$
\frac{A C}{B C}>\sqrt{2}
$$

If further P is a point on the line $B G$ extended such that $A G C P$ is a parallelogram, show that the triangle $A B C$ and $G A P$ are similar.
2. If $x^{5}-x^{3}+x=a$, prove that $x^{6} \geq 2 a-1$.
3. In any set of 181 square integers, prove that one can always find a subset of 19 numbers, sum of whose elements is divisible by 19.
4. Find the number of nondegenerate triangles whose vertices lie in the set of points (s, t) in the plane such that $0 \leq s \leq 4,0 \leq t \leq 4$, with s and t integers.
5. A circle passes through a vertex C of a triangle $A B C D$ and touches its sides $A B$ and $A D$ at M and N respectively. If the distance from C to the line segment $M N$ is equal to 5 units, find the area of the rectangle $A B C D$.
6. If $f: \Re \rightarrow \Re$ is a function satisfying the properties
(a) $f(-x)=-f(x)$,
(b) $f(x+1)=f(x)+1$,
(c) $f\left(\frac{1}{x}\right)=\frac{f(x)}{x^{2}}$, for $x \neq 0$,
prove that $f(x)=x$ for all real values of x. Here \Re denotes the set of all real numbers.

