INMO-1994

Time : 4 hours.

Answer as many questions as you possibly can.

1. Let G be the centroid of a triangle ABC in which the angle C is obtuse and AD and CF be the medians from A and C respectively onto the sides BC and AB. If the four points B, D, G and F are concyclic, show that

$$\frac{AC}{BC} > \sqrt{2}.$$

If further P is a point on the line BG extended such that AGCP is a parallelogram, show that the triangle ABC and GAP are similar.

- 2. If $x^5 x^3 + x = a$, prove that $x^6 \ge 2a 1$.
- 3. In any set of 181 square integers, prove that one can always find a subset of 19 numbers, sum of whose elements is divisible by 19.
- 4. Find the number of nondegenerate triangles whose vertices lie in the set of points (s, t) in the plane such that $0 \le s \le 4$, $0 \le t \le 4$, with s and t integers.
- 5. A circle passes through a vertex C of a triangle ABCD and touches its sides AB and AD at M and N respectively. If the distance from C to the line segment MN is equal to 5 units, find the area of the rectangle ABCD.
- 6. If $f: \Re \to \Re$ is a function satisfying the properties

(a)
$$f(-x) = -f(x)$$
,
(b) $f(x+1) = f(x) + 1$,
(c) $f\left(\frac{1}{x}\right) = \frac{f(x)}{x^2}$, for $x \neq 0$,

prove that f(x) = x for all real values of x. Here \Re denotes the set of all real numbers.