INMO-1993

Time : 4 hours

Attempt as many questions as you possibly can.

Use of calculating aids not permitted

1. The diagonals $A C$ and $B D$ of a cyclic quadrilateral $A B C D$ intersect at P. Let O be the circumcenter of triangle $A P B$ and H be the orthocenter of triangle $C P D$. Show that the points H, P, O are collinear.
2. Let $P(x)=x^{2}+a x+b$ be a quadratic polynomial in which a and b are integers. Given any integer n, show that there is an integer M such that

$$
P(n) \cdot P(n+1)=P(M) .
$$

3. If a, b, c, d are 4 non-negative real numbers and $a+b+c+d=1$, show that

$$
a b+b c+c d \leq 1 / 4
$$

4. Let $A B C$ be a triangle in a plane Σ. Find the set of all points P (distinct from A, B, C) in the plane Σ such that the circumcircles of triangles $A B P, B C P$ and $C A P$ have the same radii.
5. Show that there is a natural number n such that n ! when written in decimal notation (that is, in base 10) ends exactly in 1993 zeros.
6. Let $A B C$ be triangle right-angled at A and S be its circumcircle. Let S_{1} be the circle touching the lines $A B$ and $A C$ and the circle S internally. Further let S_{2} be the circle touching the lines $A B$ and $A C$, and the circle S externally. If r_{1} and r_{2} be the radii of the circles S_{1} and S_{2} respectively, show that

$$
r_{1} \cdot r_{2}=4(\text { area } \triangle A B C)
$$

7. Let $A=\{1,2,3, \ldots, 100\}$ and B be a subset of A having 53 elements. Show that B has two distinct elements x and y whose sum is divisible by 11 .
8. Let f be a bijective (1-1 and onto) function from $A=\{1,2,3 \ldots, n\}$ to itself. Show that there is positive number $M \geq 1$ such that

$$
f^{M}(i)=f(i), \text { for each } i \text { in } A
$$

f^{M} denotes the composite function $\underbrace{f \circ f \circ f \circ \ldots \circ f}_{M \text { times }}$.
9. Show that there exists a convex hexagon in the plane such that
(a) all its interior angles are equal,
(b) all its sides are $1,2,3,4,5,6$ in some order.

