INMO-1991

Time : 4 hours

Attempt as many questions as you possibly can Use of calculating aids not permitted

1. Find the number of positive integers n for which
(a) $n \leq 1991$ and
(b) 6 is a factor of $\left(n^{2}+3 n+2\right)$.
2. Given any acute-angled triangle $A B C$, let points $A^{\prime}, B^{\prime}, C^{\prime}$ be located as follows : A^{\prime} is the point where altitude from A on $B C$ meets the outwards facing semi-circle drawn on $B C$ as diameter. Points B^{\prime}, C^{\prime} are located similarly. Prove that

$$
\left[B C A^{\prime}\right]^{2}+\left[C A B^{\prime}\right]^{2}+\left[A B C^{\prime}\right]^{2}=[A B C]^{2}
$$

where $[A B C]$ denotes the area of triangle $A B C$, etc.
3. Given a triangle $A B C$, define the quantities x, y, z as follows:

$$
\begin{aligned}
x & =\tan ((B-C) / 2) \tan (A / 2) \\
y & =\tan ((C-A) / 2) \tan (B / 2) \\
z & =\tan ((A-B) / 2) \tan (C / 2)
\end{aligned}
$$

Prove that : $x+y+z+x y z=0$.
4. Let a, b, c be real numbers with $0<a<1,0<b<1,0<c<1$ and $a+b+c=2$. Prove that

$$
\frac{a}{1-a} \cdot \frac{b}{1-b} \cdot \frac{c}{1-c} \geq 8
$$

5. Triangle $A B C$ has incenter I. Let points X, Y be located on the line segment $A B, A C$ respectively so that:

$$
B X \cdot A B=I B^{2} \text { and } C Y \cdot A C=I C^{2}
$$

Given that the points X, I, Y lie on a straight line, find the possible values of the measure of angle A.
6. (a) Determine the set of all positive integers n for which

$$
3^{n+1} \text { divides } 2^{j^{n}}+1
$$

(b) Prove that 3^{n+2} does not divide $2^{3^{n}}+1$ for any positive integer n.
7. Solve the following system of equations for real x, y, z :

$$
\begin{aligned}
x+y-z & =4 \\
x^{2}-y^{2}+z^{2} & =4 \\
x y z & =6
\end{aligned}
$$

8. There are 10 objects with total weight 20 , each of the weights being a positive integer. Given that none of the weights exceeds 10 , prove that the 10 objects can be divided into two groups that balance each other when placed on the two pans of a balance.
9. Triangle $A B C$ has incenter I, its incircle touches the side $B C$ at T. The line through T parallel to $I A$ meets the incircle again at S and the tangent to the incircle at S meets the sides $A B$, $A C$ at points C^{\prime}, B^{\prime} respectively. Prove that the triangle $A B^{\prime} C^{\prime}$ is similar to triangle $A B C$.
10. For any positive integer n, let $S(n)$ denote the number of ordered pairs (x, y) of positive integers for which

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{n}
$$

(for instance, $S(2)=3$). Determine the set of positive integers n for which $S(n)=5$.

