INMO-1990

Time : 3 hours
Attempt as many questions as you possibly can.

1. Given the equation

$$
x^{4}+p x^{3}+q x^{2}+r x+s=0
$$

has four real, positive roots, prove that
(a) $p r-16 s \geq 0$
(b) $q^{2}-36 s \geq 0$
with equality in each case holding if and only if the four roots are equal.
2. Determine all non-negative integral pairs (x, y) for which

$$
(x y-7)^{2}=x^{2}+y^{2} .
$$

3. Let f be a function defined on the set of non-negative integers and taking values in the same set. Given that
(a) $x-f(x)=19[x / 19]-90[f(x) / 90]$ for all non-negative integers x;
(b) $1900<f(1990)<2000$,
find the possible values that $f(1990)$ can take.
(Notation : here $[z]$ refers to largest integer that is $\leq z$, e.g. $[3.1415]=3$).
4. Consider the collection of all three-element subsets drawn from the set $\{1,2,3,4, \ldots, 299,300\}$. Determine the number of those subsets for which the sum of the elements is a multiple of 3 .
5. Let a, b, c denote the sides of a triangle. Show that the quantity

$$
\frac{a}{(b+c)}+\frac{b}{(c+a)}+\frac{c}{(a+b)}
$$

must lie between the limits $3 / 2$ and 2 . Can equality hold at either limits?
6. Triangle $A B C$ is scalene with angle A having a measure greater than 90 degrees. Determine the set of points D that lie on the extended line $B C$, for which

$$
|A D|=\sqrt{|B D||C D|}
$$

where $|B D|$ refers to the (positive) distance between B and D.
7. Let $A B C$ be an arbitrary acute angled triangle. For any point P lying within the triangle, let D, E, F denote the feet of the perpendiculars from P onto the sides $A B, B C, C A$ respectively. Determine the set of all possible positions of the point P for which the triangle $D E F$ is isosceles. For which position of P will the triangle $D E F$ become equilateral?

