INMO-1989

Time : 3 hours

Attempt as many questions as you possibly can.

1. Prove that the polynomial

$$
f(x)=x^{4}+26 x^{3}+56 x^{2}+78 x+1989
$$

cannot be expressed as a product

$$
f(x)=p(x) q(x)
$$

where $p(x), q(x)$ are both polynomials with integral coefficients and with degree ; 4 .
2. Let a, b, c and d be any four real numbers, not all equal to zero. Prove that the roots of the polynomial

$$
f(x)=x^{6}+a x^{3}+b x^{2}+c x+d
$$

cannot all be real.
3. Let A denote a subset of the set $\{1,11,21,31, \ldots 541,551\}$ having the property that no two elements of A add up to 552 . Prove that A cannot have more than 28 elements.
4. Determine with proof, all the positive integers n for which:
(a) n is not the square of any integer; and
(b) $[\sqrt{n}]$ divides n^{2}.
(Notation : $[x]$ denotes the largest integer that is less than or equal to x).
5 . For positive integers n, define $A(n)$ to be

$$
\frac{(2 n)!}{(n!)^{2}}
$$

Determine the sets of positive integers n for which
(a) $A(n)$ is an even number,
(b) $A(n)$ is a multiple of 4 .
6. Triangle $A B C$ has incenter I and the incircle touches $B C, C A$ at D, E respectively. Let $B I$ meet $D E$ at G. Show that $A G$ is perpendicular to $B C$.
7. Let A be one of the two points of intersection of two circles with centers X, Y respectively. The tangents at A to the two circles meet the circles again at B, C.
Let a point P be located so that $P X A Y$ is a parallelogram. Show that P is also the circumcenter of triangle $A B C$.

