INDIAN NATIONAL MATHEMATICS OLYMPIAD 1987

HTTPS://GOFACADEMY.IN

Time 3 hours]
INMO 1987
[Max Marks 100

Attempt all questions.
Q. 1 Given m and n as relatively prime positive integers greater than one, show that $\log _{10} \mathrm{~m} / \log _{10} \mathrm{n}$ is not a rational number.
Q. 2 Determine the largest number in the infinite sequence

$$
1, \sqrt[2]{2}, \sqrt[3]{3}, \sqrt[4]{4}, \ldots \sqrt[n]{n} \ldots
$$

Q. 3 Let T be the set of all triplets ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) of integers such that $1 \leq \mathrm{a} \angle \mathrm{b} \angle \mathrm{c}$ ≤ 6 For each triplet ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) in T , take number axbxc Add all these numbers corresponding to all the triplets in T. Prove that the answer is divisible by 7 .
Q. 4 If $\mathrm{x}, \mathrm{y}, \mathrm{z}$, and n are natural numbers, and $\mathrm{n} \geq \mathrm{z}$ then prove that the relation $x^{n}+y^{n}=z^{n}$ does not hold.
Q. 5 Find a finite sequence of 16 numbers such that:
[a] it reads same from left to right as from right to left.
[b] the sum of any 7 consecutive terms is -1 ,
[c] the sum of any 11 consecutive terms is +1 .
Q. 6 Prove that if coefficients of the quadratic equation $a x^{2}+b x+c=0$ are odd integers, then the roots of the equation cannot be rational numbers.
Q. 7 Construct the $\Delta \mathrm{ABC}$, given $\mathrm{h}_{\mathrm{a}}, \mathrm{h}_{\mathrm{b}}$ (the altitudes from A and B) and m_{a}, the median from the vertex A .
Q. 8 Three congruent circles have a common point 0 and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the in-centre and the circum-centre of the triangle and the common point 0 are collinear.
Q. 9 Prove that any triangle having two equal internal angle bisectors (each measured from a vertex to the opposite side) is isosceles.

$\Omega \Omega \Omega \Omega \Omega \Omega \Omega$

