INDIAN NATIONAL MATH OLYMPIAD 1986

Time : 3 hours] HTTPS://GOFACADEMY.IN [Max Marks 100
Attempt all questions.
Q. 1 A person who left home between 4 p.m. and 5 p.m. returned between 5 p.m. and 6 p.m. and found that the hands of his watch had exactly exchanged place, when did he go out?
Q. 2 Solve.

$$
\begin{aligned}
& \log _{2} \mathrm{X}+\log _{4} \mathrm{y}+\log _{4} \mathrm{Z}=2 \\
& \log _{3} \mathrm{y}+\log _{9} \mathrm{Z}+\log _{9} \mathrm{X}=2 \\
& \log _{4} \mathrm{Z}+\log _{16} \mathrm{X}+\log _{16} \mathrm{y}=2
\end{aligned}
$$

Q. 3 Two circles with radii a and b respectively touch each other externally. Let c be the radius of a circle that touches these two circles as well as a common tangent to the two circles. Prove that

$$
\frac{1}{\sqrt{c}}=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}
$$

Q. 4 Find the least natural number whose last digit is 7 such that it becomes 5 times larger when this last digit is carried to the beginning of the number.
Q. 5 If $\mathrm{P}(\mathrm{x})$ is a polynomial with integer coefficients and $\mathrm{a}, \mathrm{b}, \mathrm{c}$, three distinct integers, then show that it is impossible to have $\mathrm{P}(\mathrm{a})=\mathrm{b}, \mathrm{P}$ (b) $=\mathrm{c}, \mathrm{P}(\mathrm{c})=\mathrm{a}$.
Q. 6 Construct a quadrilateral which is not a parallelogram, in which a pair of opposite angles and a pair of opposite sides are equal.
Q. 7 If $\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}$ are integers greater than 1 such that a and b have no common factor except 1 and $x^{a}=y^{b}$ show that $x=n^{b}, y=n^{a}$ for some integer n greater than 1 .
Q. 8 Suppose A_{1}, A_{6} are six sets each with four elements and $B_{1} \ldots \ldots$. Bn are n sets each with two elements, Let $\mathrm{S}=\mathrm{A}_{1} \mathrm{UA}_{2} \mathrm{U}_{\mathrm{I}} . . \mathrm{UA}_{6}=$ $B_{1} U \ldots B_{n}$. Given that each elements of S belogs to exactly four of the A's and to exactly three of the B's, find n.
Q. 9 Show that among all quadrilaterals of a given perimeter the square has the largest area.

