$11^{\text {th }}$ KVS Maths Olympiad Contest - 2008

Time : 3 Hours

M.M. : 100

NOTE: Attempt all questions. No electronic gadget is allowed during the examination.

1) Find the value of $S=1^{2}-2^{2}+3^{2}-4^{2}+\ldots \ldots \ldots \ldots \ldots \ldots-98^{2}+99^{2}$
2) Find the smallest multiple of ' 15 ' such that each digit of the multiple is either ' 0 ' or ' 8 '.
3) At the end of year 2002. Ram was half as old as his grandfather. The sum of years in which they were born is 3854 . What is the age of Ram at the end of year 2003?
4) Find the area of the largest square, which can be inscribed in a right angle triangle with legs ' 4 ' and ' 8 ' units.
5) In a Triangle the length of an altitude is 4 units and this altitude divides the opposite side in two parts in the ratio $1: 8$. Find the length of a segment parallel to altitude which bisects the area of the given triangle.
6) A number ' X ' leaves the same remainder while dividing 5814, 5430, 5958. What is the largest possible value of ' X '?
7) A sports meet was organized for four days. On each day, half of existing total medals and one more medal was awarded. Find the number of medals awarded on each day.
8) Let $\triangle \mathrm{ABC}$ be isosceles with $\angle \mathrm{ABC}=\angle \mathrm{ACB}=78^{\circ}$. Let D and E be the points on sides $A B$ and $A C$ respectively such that $\angle B C D=24^{\circ}$ and $\angle C B E=51^{\circ}$. Find the angle $\angle \mathrm{BED}$ and justify your result.
9) If α, β and γ are the roots of the equation.
$(x-a)(x-b)(x-c)+1=0$.
Then show that a, b and c are the roots of the equation
$(\alpha-x)(\beta-x)(\gamma-x)+1=0$.
10) A $4 \times 4 \times 4$ wooden cube is painted so that one pair of opposite faces is blue, one pair green and one pair red. The cube is now sliced into 64 cubes of side 1 unit each.
(i) How many of the smaller cubes have no painted face?
(ii) How many of the smaller cubes have exactly one painted face?
(iii) How many of the smaller cubes have exactly two painted faces?
(iv) How many of the smaller cubes have exactly three painted faces?
(v) How many of the smaller cubes have exactly one face painted blue and one face painted green?

$11^{\text {th }}$ KVS Math's Olympiad contest -2008

Solutions

Q.1.Find the value of $S=1^{2}-2^{2}+3^{2}-4^{2}+\ldots \ldots \ldots \ldots \ldots \ldots-98^{2}+99^{2}$

$$
\begin{aligned}
& \text { Solution : Let } \\
& \begin{aligned}
& \mathrm{S}=1^{2}-2^{2}-3^{2}-4^{2}+\ldots \ldots \ldots-98^{2}+99^{2} \\
&= 1^{2}\left(-2^{2}+3^{2}\right)\left(-4^{2}+5^{2}\right)-\left(6^{2}+7^{2}\right) \ldots \ldots \ldots \ldots . \\
&- 98^{2}+99^{2} \\
&= 1^{2}+(3+2)(3-2)+(4+5)(5-4) \\
& \quad+(6+7)(7-6)+\ldots \ldots \ldots+(99-98)(99+98) \\
&= 1+2+3+4+5+6+7+\ldots \ldots \ldots+98+99
\end{aligned}
\end{aligned}
$$

Further,
$\mathrm{S}=1+2+3+4+5+6+7+\ldots \ldots \ldots+98+99$
$+\mathrm{S}=99+98+97+96+95+94+93+\ldots \ldots \ldots+2+1$
$\Rightarrow 2 \mathrm{~S}=100+100+100+100+100+100+100 \ldots . .+100+100$
$=99 \times 100$
$\Rightarrow S=50 \times 99$

$$
=4950
$$

Q.2. Find the smallest multiple of ' 15 ' such that each digit of the multiple is either ' 0 ' or ' 8 '.

Solution:

Smallest multiple of 15 , such that each digit of the multiple in either 0 or 8 are

Two \& Three digit nos	Four digit and Five digit nos
80	8000
880	8008
808	8080
800	8800
	8880
	80888
	80888
	88088

So only possibility for multiple of 15 i.e. divisible by 5
is last digit is 0 i.e.
(i) 2 digits 80
(ii) 3 digits 880,800
(iii) 4 digit $\mathrm{s} \quad 8000,8800,8880,8080$
(iv) 5 digit $88880 \quad 80000$
$88800 \quad 88000$
88080
As $15=5 \times 3$
So the number should be divisible by 3 the sum of digit should be divisible by 3 .
Hence let us analyze the sum of digits in (i), (ii), (iii) and (iv),
(i) 2 digit : not possible
(ii) 3 digit : not possible
(iii) 4 digit : with 888

$$
\text { sum in } 8+8+8=24
$$

that is divisible by 3
But last digit should be 0 and it should contain three numbers of 8 .
i. e. 8880
Q. 3 At the end of year 2002. Ram was half as old as his grandfather. The sum of years in which they were born is 3854 . What is the age of Ram at the end of year 2003?

Let age of Ram at the end of $2002=x$
so age of his grand father $=2 x$
so, Ram was born in (2002-x)
Ram's grand father was born in (2002-2x)
from question : $2002-x+2002-2 x=3854$
$\Rightarrow \quad-3 x=-150$
$\Rightarrow \quad x=50$
So, the age of Ram at the end of 2003 in 51.
Q. 4 Find the area of the largest square, which can be inscribed in a right angle triangle with legs ' 4 ' and ' 8 ' units.

Solution:

Let the side of square is x as in figure.

From property of similar triangle

$$
\begin{aligned}
& \frac{4-x}{x}=\frac{x}{8-x} \\
\Rightarrow & (4-x)(8-x)=x^{2} \\
\Rightarrow & 32-4 x-8 x+x^{2}=x^{2} \\
\Rightarrow & 32=12 x \\
\Rightarrow & x=\frac{8}{3}=2.67
\end{aligned}
$$

so Area of largest square in $\frac{64}{9}$ sq units

$$
=7 \frac{1}{9} \text { sq units. }
$$

Q.5. In a Triangle the length of an altitude is 4 units and this altitude divides the opposite side in two parts in the ratio $1: 8$. Find the length of a segment parallel to altitude which bisects the area of the given triangle.

Solution:
Let the triangle is ABC an in figure

$\mathrm{AD}=4$ unit
$\mathrm{BD}=\mathrm{x}$
DC $=8 \mathrm{x}$
Let $\mathrm{EF}=h$ and

$$
\mathrm{DF}=\mathrm{t}
$$

So Area $\mathrm{ABD}=\frac{1}{2} \mathrm{X} 4 \mathrm{X} x=2 x$

$$
\text { Area } \mathrm{ABC}=\frac{1}{2} \mathrm{X} 9 x \mathrm{X} 4=18 \mathrm{x}
$$

Let $E F$ bisect the area of $A B C$, and $E F \| A D$
So,
area $\mathrm{EFC}=9 x$

$$
\frac{1}{2}
$$

$$
\begin{align*}
& =\mathrm{X}(8 \mathrm{x}-\mathrm{t}) \mathrm{Xh} \\
\Rightarrow h & =\frac{18 x}{8 x-\mathrm{t}} \tag{1}
\end{align*}
$$

The area of ADFE

$$
\begin{align*}
&=\frac{1}{2} \mathrm{X}(\mathrm{AD}+\mathrm{EF}) \mathrm{Xt} \\
&=\frac{1}{2} \mathrm{X}(\mathrm{AD}+\mathrm{EF}) \mathrm{Xt} \\
&=(9 x-2 x) \quad \text { [i.e. half area }- \text { area } \mathrm{ABD} \text { of triangle] } \\
&=7 x \\
& \Rightarrow \quad 7 \mathrm{x}=\frac{1}{2} \mathrm{X}(4+\mathrm{h}) \mathrm{Xt} \\
& \mathrm{t}=\frac{14 x}{\mathrm{~h}+4} \quad \tag{2}
\end{align*}
$$

putting t form (ii) in (i)

$$
\begin{aligned}
18 x & =(8 x-t) \\
& =\left(8 x-\frac{14 x}{h+4}\right) h \\
\Rightarrow \quad 18 & =\left(8 x-\frac{14 x}{h+4}\right) h \\
\Rightarrow \quad 18 & =\left(\frac{8(h=4)-14}{h+4}\right) h
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \quad 18(\mathrm{~h}+4)=[8(\mathrm{~h}+4)-14] \mathrm{h} \\
\Rightarrow \quad 18 \mathrm{~h}+72=[8 \mathrm{~h}+32-14] \mathrm{h} \\
=\quad[8 \mathrm{~h}+18] \mathrm{h} \\
=\quad 8 \mathrm{~h}^{2}+18 \mathrm{~h} \\
\Rightarrow \quad 8 \mathrm{~h}^{2}=72 \\
\Rightarrow \quad \mathrm{~h}^{2}=\frac{72}{8} \\
\quad=9 \\
\mathrm{~h}=3
\end{gathered}
$$

Q. 6 A number ' X ' leaves the same remainder while dividing 5814, 5430, 5958. What is the largest possible value of ' X '?

Solution:

Let $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s be any number from the question, if r in remainder.

$$
\begin{align*}
& 5814=\mathrm{p} X+\mathrm{r} \ldots \ldots \ldots \ldots \ldots \ldots . \\
& 5430=\mathrm{qX}+\mathrm{r} \ldots \ldots \ldots \ldots \ldots \ldots . \tag{ii}\\
& 5958=\mathrm{s} X+\mathrm{r} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{iii}
\end{align*}
$$

from (i) \& (ii)

$$
384=(p-q) X
$$

from (ii) \& (iii)

$$
5430-5958=(q-s) X
$$

$$
\Rightarrow \quad 528=(\mathrm{s}-\mathrm{q}) X
$$

from (iii) \& (i)
$5814-5958=(p-s) X$
$\Rightarrow 144=(\mathrm{s}-\mathrm{p}) \mathrm{X}$
so we get three equation

$$
\begin{aligned}
384= & (p-q) X \\
528= & (\mathrm{s}-\mathrm{q}) X \\
144= & (\mathrm{s}-\mathrm{p}) \mathrm{X} \\
\Rightarrow \quad & (\mathrm{p}-\mathrm{q}) \mathrm{X}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \\
& (\mathrm{~s}-\mathrm{q}) \mathrm{X}=2 \times 2 \times 2 \times 2 \times \quad \times 3 \times 11 \\
& (\mathrm{~s}-\mathrm{q}) \mathrm{X}=2 \times 2 \times 2 \times 2 \times \quad \times 3 \times \quad \times 3
\end{aligned}
$$

So the HCF of these three numbers

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 2 \times 3 \\
& =48
\end{aligned}
$$

So the required largest number is 48

Check:

$$
\begin{aligned}
& 48 \times 121=5808 \text { then }+6=5814 \\
& 48 \times 113=5424 \text { then }+6=5430 \\
& 48 \times 124=5952 \text { than }+6=5958
\end{aligned}
$$

Q.7. A sports meet was organized for four days. On each day, half of existing total medals and one more medal was awarded. Find the number of medals awarded on each day.

Solution:

Let total medals $=\mathrm{m}$
Medals distributed on

$$
1^{\text {st }} \text { day }=\frac{\mathrm{m}}{2}+1=\frac{\mathrm{m}+2}{2}
$$

Remaining medals for $2^{\text {nd }}$ day
$=\quad \mathrm{m}-\left[\right.$ medals distributed on $1^{\text {st }}$ day $]$
$=m-\left(\frac{m-2}{2}\right)$
$=\frac{\mathrm{m}-2}{2}$

So, medals distributed on $2^{\text {nd }}$ day

$$
\begin{aligned}
& =\left(\frac{m+2}{4}\right)+1 \\
& =\left(\frac{m+2}{4}\right)
\end{aligned}
$$

Remaining medals for $3^{\text {rd }}$ day
$=\mathrm{m}-\left[\right.$ medals distributed or $1^{\text {st }}+2^{\text {nd }}$ day $]$
$=m-\left(\frac{m+2}{2}+\frac{m+2}{4}\right)$

$$
=\frac{m-6}{4}
$$

So, medals distributed on $3^{\text {rd }}$ day

$$
\begin{aligned}
& =\frac{\mathrm{m}-6}{8}+1 \\
& =\frac{\mathrm{m}+2}{8}
\end{aligned}
$$

Remaining medals for $4^{\text {th }}$ day

$$
=\quad \mathrm{m}-\left[\text { medals distributed on } 1^{\text {st }}+2^{\text {nd }}+3^{\text {rd }} \text { day }\right]
$$

$$
=m-\left(\frac{m+2}{2}+\frac{m+2}{4}+\frac{m+2}{8}\right)
$$

$$
=\frac{m+14}{8}
$$

So, medals distributed on $4^{\text {th }}$ day

$$
\begin{aligned}
& =\frac{m-14}{16}+1 \\
& =\frac{m+2}{16}
\end{aligned}
$$

So Final remaining medals after distribution on $4^{\text {th }}$ day
$=\mathrm{m}-\left[\right.$ medals distributed on $1^{\text {st }}+2^{\text {nd }}+3^{\text {rd }}+4^{\text {th }}$ day $]$

$$
=m-\left[\frac{m+2}{2}+\frac{m+2}{4}+\frac{m+2}{8}+\frac{m+2}{16}\right]
$$

$$
=m-\frac{15 m+30}{16}
$$

But sport end $\&$ hence methods remained $=0$

$$
\begin{aligned}
& \Rightarrow \quad 16 \mathrm{~m}=15 \mathrm{~m}+30 \\
& \Rightarrow \quad \mathrm{~m}=30
\end{aligned}
$$

So day wise medal distribution
Day $1=16$
Day $2=8$
Day $3=4$
Day $4=2$
11) Total $=30$
Q.8. Let $\triangle \mathrm{ABC}$ be isosceles with $\angle \mathrm{ABC}=\angle \mathrm{ACB}=78^{\circ}$. Let D and E be the points on sides AB and AC respectively such that $\angle \mathrm{BCD}=24^{\circ}$ and $\angle \mathrm{CBE}=51^{\circ}$. Find the angle $\angle \mathrm{BED}$ and justify your result.

Solution:

From question $\mathrm{AB}=\mathrm{AC}$
So $\angle \mathrm{BDC}=180-(24+78)$

$$
=78^{0}
$$

and $\angle \mathrm{DBC}=78^{\circ}$
So BC = DC

Further, $\angle \mathrm{BEC}=180-(78+51)$

$$
=51
$$

So $\mathrm{BC}=\mathrm{EC}=\mathrm{DC}$
Let $\angle \mathrm{DEB}=x$,
So in isosceles CED,

$$
\begin{aligned}
\angle \mathrm{CDE} & =\angle \mathrm{CED} \\
& =51+x
\end{aligned}
$$

Let BE and CD meet at F
So $\angle \mathrm{DFE}=105^{0}$
Hence in \triangle DFE
$51+x+105+x=180^{0}$
$\Rightarrow \quad 2 \mathrm{x}=24$
$\Rightarrow \quad \mathrm{x}=12^{0}$

[^0]$\angle \mathrm{CDE}=51+12$
$$
=63
$$

Hence $\angle \mathrm{EDA}=180-(78+63)$ $=39$

Hence, $\angle \mathrm{AED}=180-(24+39)$

$$
=117^{0}
$$

so $117+12+51=180^{0}$
Hence justified

[^0]: Justification

