10th KVS Junior Mathematics Olympiad (JMO) – 2007

M.M. 100

Time : 3 hours

Note : Attempt all questions.

1. Solve

|x-1| + |x| + |x+1| = x + 2

- Find the greatest number of four digits which when divided by 3,
 5, 7, 9 leaves remainders 1, 3, 5, 7 respectively.
- A printer numbers the pages of a book starting with 1. He uses
 3189 digits in all. How many pages does the book have ?
- 4. ABCD is a parallelogram. P, Q, R and S are points on sides AB, BC, CD and DA respectively such that AP=DR. If the area of the parallelogram is 16 cm², find the area of the quadrilateral PQRS.
- 5. ABC is a right angle triangle with $B = 90^{\circ}$. M is the mid point of AC and $BM = \sqrt{117}$ cm. Sum of the lengths of sides AB and BC is 30 cm. Find the area of the triangle ABC.
- 6. Solve :

$$\frac{\sqrt{(a+x)} + \sqrt{(a-x)}}{\sqrt{(a+x)} + \sqrt{(a-x)}} = \frac{a}{x}$$

7. Without actually calculating, find which is greater :

31 $^{\rm 11}$ or 17 $^{\rm 14}$

- 8. Show that there do not exist any distinct natural numbers a, b, c, d such that $a^3 + b^3 = c^3 + d^3$ and a + b = c + d
- 9. Find the largest prime factor of :

 $3^{12} + 2^{12} - 2.6^{6}$

10. If only downward motion along lines is allowed, what is the total number of paths from point P to point Q in the figure below ?

KVJMO - 2007 SOLUTIONS

Q.1. |x-1| + |x| + |x+1| = x+2

CASE I :

x > 1

|x-1| + |x| + |x+1| = x + 2

- $\Rightarrow \quad \mathbf{x} \mathbf{1} + \mathbf{x} + \mathbf{x} + \mathbf{1} = \mathbf{x} + 2$
- $\Rightarrow 2x = 2$
- \Rightarrow x = 1

CASE II :

- 0 < x < 1
- $\therefore |\mathbf{x} 1| = \mathbf{-x} + 1$
- \therefore | x-1 | + | x | + | x + 1 | = x + 2
- \Rightarrow \star + 1 + \star + x + 1 = x + 2

 \Rightarrow x + 2 = x + 2

which has trivial solutions.

CASE III :

When, x < 0 |x - 1| = -x + 1 |x| = -x |x + 1| = -x - 1 $\therefore |x - 1| + |x| + |x + 1| = x + 2$ $\Rightarrow -x + 1 - x - x - 1 = x + 2$

- \Rightarrow 3x = x + 2
- \Rightarrow 3x x = 2
- \Rightarrow 4x = 2
- \Rightarrow x = $\frac{1}{2}$

CASE IV :

 $\mathbf{x} = \mathbf{0}$

- |x-1| + |x| + |x+1| = x + 2
- \Rightarrow | 0-1 | + | 0 | + | 0 + 1 | = 0 + 2
- $\Rightarrow |-1|+0+|1|=0+2$
- \Rightarrow 1 + 1 = 2
- $\Rightarrow 2 = 2$
- \therefore x = 0 also satisfies the equation
- \therefore x = 1 , 0, -1/2 are the solutions of the equation.

Q2. First,

L.C.M. of 3, 5, 7 and 9 = 315

Now,

The largest four – digit number multiple of 315

 \therefore the required number which leaves remainders of 1, 3, 5, 7 [(3-2), (5-2), (7-2),

(9-2)] on division by 3, 5, 7 and 9.

= 9765 - 2 = 9763

Q3. First,

The printer printed 9 single digits numbers (1-9), upto 9

i.e. $9 \ge 1 = 9$ digits.

 \therefore No. of digits remaining to be printed = 3189 - 9 = 3180

Then, the printer printed 90 2 – digits numbers (10-99), upto 99

i.e. $2 \ge 90 = 180$ digits.

 \therefore No. of digits remaining to be printed 3180 - 180 = 3000 digits.

Then, the printer printed 900, 3 - digit numbers, (100 - 999) upto 999

i.e. 3 x 900 = 2700 digits.

 \therefore No. of digits remaining to be printed = 3000 - 2700 = 300 digits.

Now, Only 300 more digits are left to be printed.

... No. of 4-digit numbers which can be printed using 300 digits

$$=\frac{300}{4}=75$$

 \therefore 75 more numbers can be written after 999.

i.e. (999 + 75) = 1074

 \therefore The book has 1074 pages.

AP = DRar (ABCD) = 16 cm²

ar (PQ RS) = ?

Construction :

Draw SM⊥PR

and $QN \perp PR$

Now,

 \therefore DC||AB|

 $\therefore DR ||AP|$

 \therefore DR||AP and DR=AP

: APRD is a parallelogram

 \therefore ar (APRD) = (Base) x (Height)

$$= PR \times SM$$

$$\therefore \text{ ar } (\Delta SPR) = \frac{1}{2} \times (Base) \text{ (Height)}$$

$$= \frac{1}{2} \times PR \times SM$$

$$= \frac{1}{2} \times ar \text{ (APRD)}$$
(i)

Also,

:: DC = AB

- $\Rightarrow \mathcal{DR} + \mathrm{RC} = \mathcal{AP} + \mathrm{PB}$
- \Rightarrow RC = PB

 $:: DC \parallel AB$

- \therefore RC || PB
- \therefore RC || PB and RC = PB

: RCBP is a parallelogram

 \therefore ar (RCBP) = (Base) x (Height)

 $= PR \times QN$

 \therefore (QPR) = $\frac{1}{2}$ x (Base) x (Height)

 $= \frac{1}{2} \times PR \times QN$

 $= \frac{1}{2} x \text{ ar (RCBP)}$ (ii)

Adding (i) and (ii),

ar (\triangle SPR) + ar (\triangle QPR) = ½ x ar (APRD) + ½ x ar(RCBP)

 \Rightarrow ar (PQRS) = $\frac{1}{2}$ (ar (APRD) + ar (RCBP)

= $\frac{1}{2} x \text{ ar (ABCD)}$ = $\frac{1}{2} x 16$ = 8 cm^2

 \therefore ar (PQRS) = 8 cm²

HTTPS://GOFACADEMY.IN (BEST COACHING CENTRE FOR MATHS OLYMPIAD)

Given :

 \triangle ABC is right – angled at B.

M is the mid – point of AC

 $BM = \sqrt{117} cm$

AB + BC = 30 cm

ar (ΔABC) = ?

Const : -

Draw the circumcirle of $\triangle ABC$

Now,

 \therefore angles formed on the semi-circle are right angles.

And $\angle ABC = 90^{\circ}$

 \therefore AC must be the diameter,

 \therefore M is the mid-point of AC.

 \therefore M is also the centre of the circle.

Hence,

- AM = CM = BM = Radius $\therefore AM = CM = BM$ $=\sqrt{117}$ cm $\therefore AC = AM + CM$ $=\sqrt{117} + =\sqrt{117}$ $2\sqrt{117}$ = ΔABC, ∴ In $\angle B = 90^{\circ}$ $AC = 2 \sqrt{117} cm$ AB + BC = 30 cm \therefore By Pythagoras theorem, we have, $AB^2 + BC^2 = AC^2$ $(AB + BC)^2 - 2.AB.BC = AC^2$ \Rightarrow $(30)^2 - 2.AB.BC = (2\sqrt{117})^2$ \Rightarrow 900 - 2.AB.BC = 4 X 117 \Rightarrow 900 – 4 X 117 = 2.AB.BC \Rightarrow
 - \Rightarrow 2.AB.BC = 900 468

$$\Rightarrow AB.BC = \frac{432}{2} = 216 \text{ cm}^2$$

$$\therefore \quad \text{ar} (\Delta ABC) = \frac{1}{2} \text{ x} (Base) \text{ x} (Height)$$
$$= \frac{1}{2} \text{ x} (AB) \text{ x} (BC)$$
$$= \frac{1}{2} \text{ x} 216$$
$$= 108 \text{ cm}^2$$
$$\text{ar} (\Delta ABC) = 108 \text{ cm}^2$$

Q6.
$$\frac{\sqrt{(a+x)} + \sqrt{(a-x)}}{\sqrt{(a+x)} + \sqrt{(a-x)}} = \frac{a}{x}$$
$$\implies 1 = \frac{a}{x}$$
$$\implies a = x$$

CHECK :

L.H.S. =
$$\frac{\sqrt{(a+a)} + \sqrt{(a-a)}}{\sqrt{(a+a)} + \sqrt{(a-a)}}$$

= $\frac{\sqrt{2a} + 0}{\sqrt{2a} + 0}$
= 1
R.H.S. = $\frac{a}{x} = \frac{a}{a} = 1$
 \therefore L.H.S. = R.H.S
Verified

Q7. 31^{11} or 17^{14}

31 < 32

- or $31 < 2^5$
- or $31^{11} < (2^5)^{11}$
- or $31^{11} < 2^{55}$
 - 17 > 16
- or $17 > 2^4$
- or $17^{14} > (2^4)^{14}$
- or $17^{14} > 2^{56}$
- :: 31¹¹ < 2⁵⁵
- and $17^{14} > 2^{56}$
- and $2^{56} > 2^{55}$
- \therefore 17¹⁴ > 31¹¹
- Q8. $a^3 + b^3 = c^3 + d^3$ and a + b = c + d

$$a^{3} + b^{3} = c^{3} + d^{3}$$

$$\Rightarrow (a+b) (a^{2}-ab+b^{2}) = (c+d) (c^{2} - cd + d^{2})$$

$$\Rightarrow a^{2} - ab + b^{2} = c^{2} - cd + d^{2}$$

$$\Rightarrow (a+b)^{2} - 3ab = (c+d)^{2} - 3cd$$

$$\Rightarrow -3ab = -3cd$$

 \Rightarrow ab = cd

$$\Rightarrow \quad \sqrt{ab} = \sqrt{cd}$$

 \therefore It does not satisfy the condition.

So, it is not possible for $a^3 + b^3 = c^3 + d^3$ and a + b = c + d,

Simultaneously

$$\therefore \qquad \frac{a+b}{2} = \frac{c+d}{2}$$
$$\sqrt{ab} = \sqrt{cd}$$

Here, A.M. of a, b is equal to AM of c, d

And G.M. of a, b is equal to G.M. of c, d

This is only possible when a,b and c,d are equal

But, they must be distinct

 \therefore It is not possible, if a and b are distinct.

Q9.
$$3^{12} + 2^{12} - 2.6^{6}$$

= $(3^{6})^{2} + (2^{6})^{2} - 2. (3 \times 2)^{6}$
= $(3^{6})^{2} + (2^{6})^{2} - 2. (3^{6}) \times (2)^{6}$
= $(3^{6} - 2^{6})^{2}$
= $[(3^{3})^{2} - (2^{3})^{2}]^{2}$
= $[(3^{3} + 2^{3})(3^{3} - 2^{3})]^{2}$

$$= [(3^3 + 2^3) + (3^3 - 2^3)]^2$$

$$= [(3+2) (32 - 3 x 2 + 22) (3-2) (32 + 3 x 2 + 22)]2$$

$$= [(5) \times (9 - 6 + 4) (1) \times (9 + 6 + 4)]^2$$

- $= [(5) x (19) x (7)]^2$
- $= [5 x 19 x 7]^2$

$$=$$
 5² x 19² x 7²

 \therefore The largest prime factor of $(3^{12} + 2^{12} - 2.6^6)$

By using the principle of Pascal's triangle, we have,

 \therefore There are 20 paths possible from P to Q.

HTTPS://GOFACADEMY.IN (BEST COACHING CENTRE FOR MATHS OLYMPIAD)