$\mathbf{1 0}^{\text {th }}$ KVS Junior Mathematics Olympiad (JMO) - 2007

M.M. 100

Time : 3 hours
Note : Attempt all questions.

1. Solve

$$
|x-1|+|x|+|x+1|=x+2
$$

2. Find the greatest number of four digits which when divided by 3 ,

5, 7, 9 leaves remainders $1,3,5,7$ respectively.
3. A printer numbers the pages of a book starting with 1 . He uses

3189 digits in all. How many pages does the book have ?
4. ABCD is a parallelogram. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are points on sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively such that $\mathrm{AP}=\mathrm{DR}$. If the area of the parallelogram is 16 cm^{2}, find the area of the quadrilateral PQRS .
5. ABC is a right angle triangle with $\mathrm{B}=90^{\circ} . \mathrm{M}$ is the mid point of AC and $B M=\sqrt{117} \mathrm{~cm}$. Sum of the lengths of sides $A B$ and $B C$ is 30 cm . Find the area of the triangle ABC .
6. Solve :

$$
\frac{\sqrt{(a+x)}+\sqrt{(a-x)}}{\sqrt{(a+x)}+\sqrt{(a-x)}}=\frac{a}{x}
$$

7. Without actually calculating, find which is greater :
8. Show that there do not exist any distinct natural numbers a, b, c, d such that $a^{3}+b^{3}=c^{3}+d^{3}$ and $a+b=c+d$
9. Find the largest prime factor of :
$3^{12}+2^{12}-2.6^{6}$
10. If only downward motion along lines is allowed, what is the total number of paths from point P to point Q in the figure below?

Q

KVIMO-2007 SOLUTIONS

Q.1. $|x-1|+|x|+|x+1|=x+2$

CASE I :

$$
x>1
$$

$$
\begin{aligned}
& |\mathrm{x}-1|+|\mathrm{x}|+|\mathrm{x}+1|=\mathrm{x}+2 \\
\Rightarrow & \mathrm{x}-1+\mathrm{x}+\mathrm{x}+1=\mathrm{x}+2 \\
\Rightarrow & 2 \mathrm{x}=2 \\
\Rightarrow & \mathrm{x}=1
\end{aligned}
$$

CASE II :

$0<x<1$
$\therefore|\mathrm{x}-1|=-\mathrm{x}+1$
$\therefore|\mathrm{x}-1|+|\mathrm{x}|+|\mathrm{x}+1|=\mathrm{x}+2$
$\Rightarrow \quad-x+1+x+x+1=x+2$
$\Rightarrow \quad \mathrm{x}+2=\mathrm{x}+2$
which has trivial solutions.

CASE III :

When, $\mathrm{x}<0$

$$
|x-1|=-x+1
$$

$$
|x|=-x
$$

$$
|x+1|=-x-1
$$

$\therefore|\mathrm{x}-1|+|\mathrm{x}|+|\mathrm{x}+1|=\mathrm{x}+2$
$\Rightarrow \quad-\mathrm{x}+1-\mathrm{x}-\mathrm{x}-1=\mathrm{x}+2$

$$
\begin{array}{ll}
\Rightarrow & -3 x=x+2 \\
\Rightarrow & -3 x-x=2 \\
\Rightarrow & -4 x=2 \\
\Rightarrow & x=-1 / 2
\end{array}
$$

CASE IV :

$\mathrm{x}=0$

$$
\begin{aligned}
& |\mathrm{x}-1|+|\mathrm{x}|+|\mathrm{x}+1|=\mathrm{x}+2 \\
\Rightarrow & |0-1|+|0|+|0+1|=0+2 \\
\Rightarrow & |-1|+0+|1|=0+2 \\
\Rightarrow & 1+1=2 \\
\Rightarrow & 2=2
\end{aligned}
$$

$\therefore \mathrm{x}=0$ also satisfies the equation
$\therefore \mathrm{x}=1,0,-1 / 2$ are the solutions of the equation.
Q2. First,
L.C.M. of $3,5,7$ and $9=315$

Now,
The largest four - digit number multiple of 315

$$
\begin{aligned}
& =\quad 315 \times 31 \\
& =\quad 9765
\end{aligned}
$$

\therefore the required number which leaves remainders of $1,3,5,7$ [(3-2), (5-2), (7-2), (9-2)] on division by $3,5,7$ and 9 .

$$
\begin{aligned}
& =\quad 9765-2 \\
& =\quad 9763
\end{aligned}
$$

Q3. First,

The printer printed 9 single digits numbers (1-9), upto 9
i.e. $9 \times 1=9$ digits.
\therefore No. of digits remaining to be printed $=3189-9=3180$
Then, the printer printed 902 - digits numbers (10-99), upto 99
i.e. $2 \times 90=180$ digits.
\therefore No. of digits remaining to be printed $3180-180=3000$ digits.
Then, the printer printed 900, 3 - digit numbers, (100-999) upto 999
i.e. $3 \times 900=2700$ digits.
\therefore No. of digits remaining to be printed $=3000-2700=300$ digits.
Now, Only 300 more digits are left to be printed.
\therefore No. of 4-digit numbers which can be printed using 300 digits

$$
=\frac{300}{4}=75
$$

$\therefore 75$ more numbers can be written after 999 .
i.e. $(999+75)=1074$
\therefore The book has 1074 pages.
Q4.

Given :

$A P=D R$
ar $(\mathrm{ABCD})=16 \mathrm{~cm}^{2}$

$$
\text { ar }(\mathrm{PQ} \text { RS })=\text { ? }
$$

Construction :
Draw $\mathrm{SM} \perp \mathrm{PR}$
and $\mathrm{QN} \perp \mathrm{PR}$
Now,
$\therefore \mathrm{DC} \| \mathrm{AB}$
$\therefore \mathrm{DR} \| \mathrm{AP}$
$\therefore \mathrm{DR} \| \mathrm{AP}$ and $\mathrm{DR}=\mathrm{AP}$
\therefore APRD is a parallelogram
\therefore ar (APRD) $\quad=($ Base $) \mathrm{x}$ (Height)

$$
\begin{align*}
& =\mathrm{PR} \times \text { SM } \\
\therefore \operatorname{ar}(\triangle \mathrm{SPR}) & =1 / 2 \times \text { (Base })(\text { Height }) \\
& =1 / 2 \times \text { PR } \times \text { SM } \\
& =1 / 2 \times \text { ar }(\mathrm{APRD}) \tag{i}
\end{align*}
$$

Also,

$$
\begin{gather*}
\because \mathrm{DC}=\mathrm{AB} \\
\Rightarrow \quad D R+\mathrm{RC}=\mathrm{AP}+\mathrm{PB} \\
\Rightarrow \quad \mathrm{RC}=\mathrm{PB} \\
\because \mathrm{DC} \| \mathrm{AB} \\
\therefore \mathrm{RC} \| \mathrm{PB} \\
\because \mathrm{RC} \| \mathrm{PB} \text { and } \mathrm{RC}=\mathrm{PB} \\
\therefore \mathrm{RCBP} \text { is a parallelogram } \\
\therefore \mathrm{ar}(\mathrm{RCBP})=(\mathrm{Base}) \times(\mathrm{Height}) \\
\quad=\mathrm{PR} \times \mathrm{QN} \\
\quad=1 / 2 \times(\mathrm{Base}) \times(\mathrm{Height}) \\
\quad=1 / 2 \times \text { PR } \times \mathrm{QN} \\
\therefore(\mathrm{QPR}) \tag{ii}\\
\quad=1 / 2 \times \text { ar }(\mathrm{RCBP})
\end{gather*}
$$

Adding (i) and (ii),

$$
\begin{aligned}
& \operatorname{ar}(\Delta \mathrm{SPR})+\operatorname{ar}(\Delta \mathrm{QPR})=1 / 2 \times \operatorname{ar}(\mathrm{APRD})+1 / 2 \times \operatorname{ar}(\mathrm{RCBP}) \\
& \Rightarrow \quad \operatorname{ar}(\mathrm{PQRS})=1 / 2(\operatorname{ar}(\mathrm{APRD})+\operatorname{ar}(\mathrm{RCBP})
\end{aligned}
$$

$$
\begin{aligned}
&=1 / 2 \times \text { ar }(\mathrm{ABCD}) \\
&=1 / 2 \times 16 \\
&=8 \mathrm{~cm}^{2} \\
& \therefore \operatorname{ar}(\mathrm{PQRS})=8 \mathrm{~cm}^{2}
\end{aligned}
$$

Q5.

Given :
$\triangle \mathrm{ABC}$ is right - angled at B .
M is the mid - point of AC
$\mathrm{BM}=\sqrt{117} \mathrm{~cm}$
$\mathrm{AB}+\mathrm{BC}=30 \mathrm{~cm}$
ar $(\triangle \mathrm{ABC})=$?

Const:-

Draw the circumcirle of $\triangle \mathrm{ABC}$
Now,
\because angles formed on the semi-circle are right angles.
And $\angle \mathrm{ABC}=90^{\circ}$
\therefore AC must be the diameter,
$\because \mathrm{M}$ is the mid-point of AC.
$\therefore \mathrm{M}$ is also the centre of the circle.

Hence,
$\mathrm{AM}=\mathrm{CM}=\mathrm{BM}=$ Radius

$$
\therefore \mathrm{AM}=\mathrm{CM}=\mathrm{BM}
$$

$$
=\sqrt{117} \mathrm{~cm}
$$

$$
\therefore \mathrm{AC}=\mathrm{AM}+\mathrm{CM}
$$

$$
=\sqrt{117}+=\sqrt{117}
$$

$$
=2 \sqrt{117}
$$

\therefore In $\quad \triangle \mathrm{ABC}$,

$$
\angle \mathrm{B}=90^{\circ}
$$

$$
\mathrm{AC}=2 \sqrt{117} \mathrm{~cm}
$$

$\mathrm{AB}+\mathrm{BC}=30 \mathrm{~cm}$
\therefore By Pythagoras theorem, we have,

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \\
\Rightarrow \quad & (\mathrm{AB}+\mathrm{BC})^{2}-2 \cdot \mathrm{AB} \cdot \mathrm{BC}=\mathrm{AC}^{2} \\
\Rightarrow \quad & (30)^{2}-2 \cdot \mathrm{AB} \cdot \mathrm{BC}=(2 \sqrt{117})^{2} \\
\Rightarrow \quad & 900-2 \cdot \mathrm{AB} \cdot \mathrm{BC}=4 \mathrm{X} 117 \\
\Rightarrow \quad & 900-4 \mathrm{X} 117=2 \cdot \mathrm{AB} \cdot \mathrm{BC} \\
\Rightarrow \quad & 2 \cdot \mathrm{AB} \cdot \mathrm{BC}=900-468 \\
\Rightarrow \quad & \mathrm{AB} \cdot \mathrm{BC}=\frac{432}{2}=216 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ABC}) & =\frac{1}{2} \times(\text { Base }) \times(\text { Height }) \\
& =\frac{1}{2} \times(\mathrm{AB}) \times(\mathrm{BC}) \\
& =\frac{1}{2} \times 216 \\
& =108 \mathrm{~cm}^{2} \\
\operatorname{ar}(\triangle \mathrm{ABC}) & =108 \mathrm{~cm}^{2}
\end{aligned}
$$

Q6. $\frac{\{\sqrt{(a+x)}+\sqrt{(a-x)}\}}{\{\sqrt{(a+x)}+\sqrt{(a-x)}\}}=\frac{a}{x}$

$$
\begin{aligned}
& \Rightarrow \quad 1=\frac{a}{x} \\
& \Rightarrow \quad \mathrm{a}=\mathrm{x}
\end{aligned}
$$

CHECK :
L.H.S. $=\frac{\sqrt{(a+a)}+\sqrt{(a-a)}}{\sqrt{(a+a)}+\sqrt{(a-a)}}$

$$
\begin{aligned}
& =\frac{\sqrt{2 a}+0}{\sqrt{2 a}+0} \\
& =1
\end{aligned}
$$

R.H.S. $=\frac{a}{x}=\frac{a}{a}=1$
\therefore L.H.S. $=$ R.H.S
Verified

Q7.	31^{11} or 17^{14}
	$31<32$
or	$31<2^{5}$
or	$31^{11}<\left(2^{5}\right)^{11}$
or	$31^{11}<2^{55}$
	$17>16$
or	$17>2^{4}$
or	$17^{14}>\left(2^{4}\right)^{14}$
or	$17^{14}>2^{56}$
\because	$31^{11}<2^{55}$
and	$17^{14}>2^{56}$
and	$2^{56}>2^{55}$
\therefore	$17^{14}>31^{11}$

Q8. $a^{3}+b^{3}=c^{3}+d^{3}$ and $a+b=c+d$

$$
\begin{aligned}
& a^{3}+b^{3}=c^{3}+d^{3} \\
& \Rightarrow \quad(a+b)\left(a^{2}-a b+b^{2}\right)=(c+d)\left(c^{2}-c d+d^{2}\right) \\
& \Rightarrow \quad a^{2}-a b+b^{2}=c^{2}-c d+d^{2} \\
& \Rightarrow \quad(a+b)^{2}-3 a b=(c+d)^{2}-3 c d \\
& \Rightarrow \quad-3 a b=-3 c d
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad a b=c d \\
& \Rightarrow \quad \sqrt{a b}=\sqrt{c d}
\end{aligned}
$$

$\therefore \quad$ It does not satisfy the condition.
So, it is not possible for $a^{3}+b^{3}=c^{3}+d^{3}$ and $a+b=c+d$,

Simultaneously

$$
\begin{aligned}
\therefore \quad & \frac{a+b}{2} \\
& =\frac{c+d}{2} \\
& \sqrt{\mathrm{ab}}=\sqrt{\mathrm{cd}}
\end{aligned}
$$

Here, A.M. of a, b is equal to AM of c, d
And G.M. of a, b is equal to G.M. of c, d
This is only possible when a, b and c, d are equal
But, they must be distinct
\therefore It is not possible, if a and b are distinct.
Q9. $3^{12}+2^{12}-2.6^{6}$

$$
\begin{aligned}
& =\left(3^{6}\right)^{2}+\left(2^{6}\right)^{2}-2 \cdot(3 \times 2)^{6} \\
& =\left(3^{6}\right)^{2}+\left(2^{6}\right)^{2}-2 \cdot\left(3^{6}\right) \times(2)^{6} \\
& =\left(3^{6}-2^{6}\right)^{2} \\
& =\left[\left(3^{3}\right)^{2}-\left(2^{3}\right)^{2}\right]^{2} \\
& =\left[\left(3^{3}+2^{3}\right)\left(3^{3}-2^{3}\right)\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left(3^{3}+2^{3}\right)+\left(3^{3}-2^{3}\right)\right]^{2} \\
& =\quad\left[(3+2)\left(3^{2}-3 \times 2+2^{2}\right)(3-2)\left(3^{2}+3 \times 2+2^{2}\right)\right]^{2} \\
& =\quad[(5) \times(9-6+4)(1) \times(9+6+4)]^{2} \\
& =\quad[(5) \times(19) \times(7)]^{2} \\
& =\quad[5 \times 19 \times 7]^{2} \\
& =\quad 5^{2} \times 19^{2} \times 7^{2}
\end{aligned}
$$

\therefore The largest prime factor of $\left(3^{12}+2^{12}-2.6^{6}\right)$

$$
=\quad 19
$$

Q10.

By using the principle of Pascal's triangle, we have,

\therefore There are 20 paths possible from P to Q .

