KVS Junior Mathematics Olympiad (JMO) - 2005

M.M. 100

Time : 3 hours

Note: (i) Attempt all questions. Each question carries ten marks.
(ii) Please check that there are two printed pages and ten Questions in the question paper.

1. Fill in the blanks:
(a) If four times the reciprocal of the circumference of a circle equals the diameter of the circle, then the area of the circle is \qquad
(b) If $1-\frac{4}{x}+\frac{4}{x^{2}}=0$ then $\frac{2}{x}$ equals.........
(c) If $a=1000, b=100, c=10$, and $d=1$, then $(a+b+c-d)+(a+b-c+d)+(a-b+c+d)+(-a+b+c+d)$ is equal to $\ldots \ldots$.
(d) When the base of a triangle is increased by 10% and the altitude to the base is decreased by 10%, the change in area is \qquad
(e) If the sum of two numbers is 1 , and their product is 1 , then the sum of their cubes is \qquad
2. (a) If $x=\left(\log _{8}^{2}\right)^{\log _{2}^{8}}$ find the value of $\log _{3} x$.
(b) If $\frac{4^{x}}{2^{x+y}}=8$ and $\frac{9^{x+y}}{3^{5 y}}=243$ find the value of $x-y$.
3. (a) Find the number of digits in the number $2^{2005} \times 5^{2000}$ when
written in full.
(b) Find the remainder when 2^{2005} is divided by 13 .
4. (a) A polynomial $\mathrm{p}(\mathrm{x})$ leaves a remainder three when divided by $\mathrm{x}-1$ and a remainder five when divided by $x-3$. Find the remainder when $p(x)$ is divided by ($\mathrm{x}-1$) (x-3).
(b) Find two numbers, both lying between 60 and 70, each of which is exactly divides $2^{43}-1$.
5. In triangle ABC the medians AM and CN to the sides BC and AB , respectively intersect in the point O.P is the mid-point of side AC, and MP intersects CN in Q . If the area of triangle OMQ is $24 \mathrm{~cm}^{2}$, find the area of triangle ABC .
6. The base of a pyramid is an equilateral triangle of side length 6 cm . The other edges of the pyramid are each of length $\sqrt{15} \mathrm{~cm}$. Find the volume of the pyramid.
7. Chords AB and CD of a circle (see figure) intersect at E and are perpendicular to each other segments AE . EB and ED are of lengths 2 cm , 6 cm and 3 cm respectively. Find the length of the diameter of the circle.

8. Three men A, B and C working together, do a job in 6 hours less time than A alone, in 1 hour less time than B alone, and in one half the time needed by C when working alone. How many hours will be needed by A and B working together, to do the job ?
9. Pegs are put on a board 1 unit apart both horizontally and vertically. A rubber band is stretched over 4 pegs as shown in the figure forming a quadrilateral. Find the area of the quadrilateral in square units.

10. The odd positive integers $1,3,5,7 \ldots$ are arranged in five columns continuing with the pattern shown on the right. Counting from the left, in which column (I, II, III, IV or V) does the number 2005 appear ? (Justify your answer)

I	II	III	IV	V
	1	3	5	7
15	13	11	9	
	17	19	21	23
31	29	27	25	
	33	35	37	39
47	45	43	41	
	49	51	53	55

KV JMO 2005 SOLUTIONS

Q1.
(a) Circumference $=2 \pi r$

$$
\begin{aligned}
& \quad \text { Diameter }=2 \mathrm{r} \\
& \therefore 4 \mathrm{x} \frac{1}{2 \pi \mathrm{r}}=2 \mathrm{r} \\
& \Rightarrow 1=\pi \mathrm{rxr} \\
& \Rightarrow 1=\pi \mathrm{r}^{2} \\
& \Rightarrow \pi \mathrm{r}^{2}=1
\end{aligned}
$$

$$
\therefore \text { Area }=\pi \mathrm{r}^{2}
$$

$$
=1 \text { sq. units }
$$

(b) $1-\frac{4}{\mathrm{x}}+\frac{4}{\mathrm{x}^{2}}=0$
$\Rightarrow 1-2 .(1) x\left(\frac{2}{x}\right)+\left(\frac{2}{x}\right)^{2}=0$
$\Rightarrow\left(1-\frac{2}{x}\right)^{2}=0$
$\Rightarrow 1-\frac{2}{\mathrm{x}}=0$
$\Rightarrow 1=\frac{2}{\mathrm{x}}$
$\Rightarrow \mathrm{x}=2$
$\therefore \frac{2}{\mathrm{x}}=\frac{2}{2}=1$
(c) $\mathrm{a}=1000, \mathrm{~b}=100, \mathrm{c}=10, \mathrm{~d}=1$

$$
(a+b+c-d)+(a+b-c+d)+(a-b+c+d)+(-a+b+c+d)
$$

$=2(a+b+c+d)$
$=2(1000+100+0+1)$
$=2 \times 1111$
$=2222 \mathrm{Ans}$
Q1. (d) If Base $=6$

Attitude $=\mathrm{a}$
\therefore Area $=\frac{1}{2} \mathrm{ab}$

Now, New Area $\left.=\frac{1}{2} x\left(\frac{90}{100} \mathrm{a}\right)\right) \times\left(\frac{110}{100} \mathrm{~b}\right)$

$$
=\quad \frac{99}{200} a b
$$

Decrease in Area $=\frac{1}{2} a b-\frac{99}{200} a b$
$=\frac{100 \mathrm{ab}-99 \mathrm{ab}}{200}$
$=\frac{1}{200} \mathrm{ab}$
\therefore Decrease Percentage $=\frac{\frac{1}{200} \mathrm{ab}}{\frac{1}{2} \mathrm{ab}} \mathrm{x} 100$
$\frac{1}{100} \times 100$
$=1 \%$ decrease.
(e)Let, the two number be x and y
$\therefore \mathrm{x}+\mathrm{y}=1$
$\therefore \mathrm{xy}=1$
$\therefore(x+y)^{2}=x^{2}+y^{2}+2 x y$
$\Rightarrow 12=x^{2}+y^{2}+2 \times 1$
$\Rightarrow x^{2}+y^{2}=1-2$
$=-1$
$\therefore x^{3}+y^{3}=(x+y) \cdot\left(x^{2}+y^{2}-x y\right)$
$\Rightarrow(1) \cdot(-1-1)$
$=-2$

Q2(a) $\quad \mathrm{X}=\left(\log _{8}^{2}\right)^{\log _{2}^{8}}$
$\log _{3} \mathrm{X}=?$

$$
\begin{aligned}
& \quad \text { Let, } \log _{8}{ }^{2}=\mathrm{m} \\
& \Rightarrow 8^{\mathrm{m}}=2 \\
& \Rightarrow 8^{\mathrm{m}}=8^{1 / 3} \\
& \Rightarrow \mathrm{~m}=\frac{1}{3} \\
& \text { let, } \log _{8}^{2} \\
& \Rightarrow \mathrm{n}=\log _{2}^{8}=\mathrm{n} \\
& \Rightarrow 2^{\mathrm{n}}=8 \\
& \Rightarrow 2^{\mathrm{n}}=2^{3} \\
& \Rightarrow \mathrm{n}=3 \\
& \Rightarrow \mathrm{pet}, \mathrm{p}=\log _{3} \mathrm{x} \\
& \therefore \mathrm{x}=\left(\log _{3} \frac{1}{27}\right. \\
& (\mathrm{m})^{\mathrm{n}} \\
& =\frac{1}{27} \\
& =\left(\frac{1}{3}\right)^{\log _{2}^{8}} \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

$\Rightarrow 3^{\mathrm{p}}=\frac{1}{27}$
$\Rightarrow 3^{\mathrm{p}}=\left(\frac{1}{3}\right)^{3}$
$\Rightarrow 3^{\mathrm{P}}=(3)^{-3}$
$\Rightarrow \mathrm{p}=-3$
$\therefore \log _{3} \mathrm{x}=-3$
Q2.(b) $\quad \frac{4^{x}}{2^{x+y}}=8$ and $\frac{9^{x+y}}{3^{5 y}}=243$

$$
\begin{aligned}
& x-y=? \\
& \frac{4^{x}}{2^{x+y}}=8 \\
& \Rightarrow \frac{\left(2^{2}\right)^{x}}{2^{x+y}}=8 \\
& \Rightarrow \frac{2^{2 x}}{2^{x+y}}=8 \\
& \Rightarrow 2^{2 x-x-y}=8 \\
& \Rightarrow 2^{x-y}=(2)^{3} \\
& \Rightarrow x-y=3
\end{aligned}
$$

$\therefore x-y=3$

$$
\begin{aligned}
& 3(\mathrm{a}) \\
& 2^{2005} \times 5^{2000} \\
& =2^{5} \times 2^{2000} \times 5^{2000} \\
& =2^{5} \times(2 \times 5)^{2000} \\
& =2^{5} \times 10^{2000} \\
& =32 \times 10^{2000} \\
& =320000000 \ldots(2000 \text { zeros })
\end{aligned}
$$

/ There are 2002 digits in the above number.

$$
\text { Q 3(b) } \begin{aligned}
2^{1} & \equiv 2(\bmod 13) \\
2^{2} & \equiv 4(\bmod 13) \\
2^{3} & \equiv 8(\bmod 13) \\
2^{4} & \equiv 16(\bmod 13) \\
& \equiv 3(\bmod 13) \\
2^{5} & \equiv 32(\bmod 13) \\
& \equiv 6(\bmod 13) \\
2^{6} & \equiv 64(\bmod 13) \\
& \equiv-1(\bmod 13)
\end{aligned}
$$

$\Rightarrow\left(2^{6}\right)^{334}=(-1)^{334}(\bmod 13)$
$\Rightarrow 2^{2004}=1(\bmod 13)$
$\Rightarrow 2^{2005}=2(\bmod 13)$
$\therefore 2^{2005}$ leaves a remainder 2 on division by 13 .
4(a)
\because The polynomial gives a remainder 3 on division by $\mathrm{x}-1$.
Let, $p(x)=k(x-1)+3$
$=\mathrm{kx}-\mathrm{k}+3$

Now,

$$
\begin{array}{r}
\mathrm { x } - 3 \longdiv { \mathrm { kx } - \mathrm { k } + 3 } \\
\frac{\mathrm{kx}-3 \mathrm{k}}{2 \mathrm{k}+3}
\end{array}
$$

$$
\therefore \quad \text { Reminder }=2 k+3
$$

But,

$$
2 k+3=5
$$

$$
\Rightarrow 2 \mathrm{k}=2
$$

$$
\Rightarrow \mathrm{k}=1
$$

$$
\therefore \mathrm{P}(\mathrm{x}) \quad=\mathrm{k}(\mathrm{x}-1)+3
$$

$$
=1(x-1)+3
$$

$$
=x-1+3
$$

$$
=x+2
$$

Now,

$$
\begin{aligned}
& (x-1)(x-3) \\
& =x^{2}-4 x+3
\end{aligned}
$$

Dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{x}^{2}-4 \mathrm{x}+3$

$$
\begin{array}{r}
\mathrm{x}^{2}-4 \mathrm{x}+3 \begin{array}{r}
\frac{0}{\mathrm{x}+2} \\
\frac{0+0}{\mathrm{x}+2}
\end{array}
\end{array}
$$

Hence, the required remainder $=x+2$.

Given that ar $(\triangle \mathrm{OMQ})=24 \mathrm{~cm}^{2}$
So, ar $(\triangle \mathrm{MOP})=24 \times 24 \mathrm{~cm}^{2}$

$$
=48 \mathrm{~cm}^{2}
$$

[Being same height and $\mathrm{MQ}=\mathrm{QP}$]
So, ar $(\triangle \mathrm{BOM})=2 \mathrm{x}$ ar $(\triangle \mathrm{MOP})$

$$
=96 \mathrm{~cm}^{2}
$$

[Taking BO as base, having same height as $\triangle \mathrm{MOP}$ on base OP]
So, ar $(\triangle \mathrm{AOP})=2 \mathrm{x}$ ar ($\triangle \mathrm{OMP}$)

$$
\begin{aligned}
& =2 \times 48 \mathrm{~cm}^{2} \\
& =96 \mathrm{~cm}^{2}
\end{aligned}
$$

$\operatorname{Area}(\triangle \mathrm{BOA})=2 \mathrm{x}$ ar $(\triangle \mathrm{AOP})$

$$
=192 \mathrm{~cm}^{2}
$$

$\operatorname{Area}(\triangle \mathrm{MPR})=\operatorname{ar}(\triangle \mathrm{BMP})$

$$
=\operatorname{ar}(\Delta \mathrm{BOM}+\Delta \mathrm{MOP})
$$

$$
\begin{aligned}
& =96+48 \mathrm{~cm}^{2} \\
& =144 \mathrm{~cm}^{2}
\end{aligned}
$$

So ar $(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{MPR})+\operatorname{ar}(\triangle \mathrm{BPM})$

$$
\begin{aligned}
& +\operatorname{ar}(\triangle \mathrm{AOP})+\operatorname{ar}(\triangle \mathrm{BOA}) \\
= & 144+144+96+192 \mathrm{~cm}^{2} \\
= & 576 \mathrm{~cm}^{2}
\end{aligned}
$$

Q6.

In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\mathrm{AD} & =\sqrt{6^{2}-3^{2}} \\
& =\sqrt{36-9} \\
& =\sqrt{27} \\
& =3 \sqrt{3}
\end{aligned}
$$

$\therefore \mathrm{AO}=\frac{2}{3} \mathrm{xAD}$
$=\frac{2}{3} \mathrm{x} 3 \sqrt{3}$
$=3 \sqrt{3} \mathrm{~cm}$

Now, In $\Delta \mathrm{AOH}$

$$
\begin{aligned}
& \begin{aligned}
& \therefore \mathrm{OH} \\
&=\sqrt{(15)^{2}-(2 \sqrt{3})^{2}} \\
&=\sqrt{15-12} \\
& \text { ar }(\Delta \mathrm{ABC})= \frac{\sqrt{3}}{4} \times 6^{2} \\
&=\frac{\sqrt{3}}{4} \times 6 \times 6 \\
&=9 \sqrt{3}
\end{aligned}
\end{aligned}
$$

\therefore Volume of the pyramid $=\frac{1}{3}($ Base $) \mathrm{x}($ Height $)$

$$
\begin{aligned}
& =\frac{1}{3} \times 9 \sqrt{3} \times \sqrt{3} \\
& =9 \mathrm{~cm}^{3}
\end{aligned}
$$

PLEASE REFER TO THE NOTE GIVEN TO THIS Q

Note for Q. 6

A regular right triangular prism can be divided into three equal and regular right pyramids as shown below :

\therefore Volume of pyramid $=1 / 3$ (volume of a prism)

$$
=1 / 3 \text { (base area) (height) }
$$

Q7.

GIVEN :

CD \| AB
$\mathrm{AE}=2 \mathrm{~cm}$
$\mathrm{BE}=6 \mathrm{~cm}$
$\mathrm{DE}=3 \mathrm{~cm}$

CONSTRUCTION :

Draw OQ \perp CD
And $\mathrm{OP} \perp \mathrm{AB}$

TO FIND

Diameter of circle $=$?

PROCESS :

\because Perpendicular drawn from the center of a circle to the chord, bisect the chord.
$\therefore \mathrm{AP}=\mathrm{PB}$
and $\mathrm{CQ}=\mathrm{QD}$

$$
\begin{aligned}
\therefore \mathrm{AP}=\mathrm{PB} & =1 / 2 \mathrm{AB} \\
& =1 / 2(\mathrm{AE}+\mathrm{EB}) \\
& =1 / 2(2+6) \\
& =1 / 2 \times 8 \\
& =4 \mathrm{~cm}
\end{aligned}
$$

In rectangle QOPE,

$$
\text { Let, } \mathrm{QE}=\mathrm{OP}=\mathrm{x} \mathrm{~cm}
$$

$\therefore \mathrm{CQ}=\mathrm{QD}$
$=\mathrm{QE}+\mathrm{ED}$
$=\mathrm{x}+3$
Also,

$$
\begin{aligned}
& \mathrm{BE}=6 \mathrm{~cm} \\
& \Rightarrow \mathrm{BP}+\mathrm{PE}=6 \mathrm{~cm} \\
& \Rightarrow 4+\mathrm{PE}=6 \mathrm{~cm} \\
& \Rightarrow \mathrm{PE}=6-4 \mathrm{~cm} \\
& \quad=2 \mathrm{~cm} \\
& \therefore \mathrm{OQ}=\mathrm{PE}=2 \mathrm{~cm}
\end{aligned}
$$

Now,
In right $\triangle \mathrm{COQ}$,
$\mathrm{CQ}=\mathrm{x}+3$
$\mathrm{OQ}=2 \mathrm{~cm}$
$\mathrm{OC}=$ radius $=\mathrm{r}$
By pathagoras theorem,
$\therefore(\mathrm{x}+3)^{2}+2^{2}=\mathrm{r}^{2}$
$\Rightarrow x^{2}+6 x+9+4=r^{2}$
$\Rightarrow \mathrm{x}^{2}+6 \mathrm{x}+13=\mathrm{r}^{2}$
In right $\triangle \mathrm{BOP}$,
$\mathrm{OP}=\mathrm{x}$
$B P=4$
$\mathrm{OB}=\mathrm{r}$
$\therefore \mathrm{x}^{2}+4^{2}=\mathrm{r}^{2}$
$\Rightarrow \mathrm{x}^{2}+16=\mathrm{r}^{2}$
Find (i) and (ii)

$$
\begin{aligned}
& x^{2}+6 x+13=x^{2}+16 \\
& \Rightarrow 6 x=16-13 \\
& \Rightarrow x=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

$$
\therefore \mathrm{r}^{2}=\mathrm{x}^{2}+16
$$

$$
=\left(\frac{1}{2}\right)^{2}+16
$$

$$
=\frac{1}{4}+16
$$

$$
=\frac{1+64}{4}
$$

$$
=\frac{65}{4}
$$

$$
\Rightarrow r=\sqrt{\frac{65}{4}}
$$

$$
=\sqrt{\frac{65}{2}}
$$

\therefore Diameter $=2 r$
$=2 \times \sqrt{\frac{65}{2}}$
$=\sqrt{65}$
\therefore Diameter $=\sqrt{65} \mathrm{~cm}$

Q8. Let, A, B and C, together do the job in x hrs.
\therefore A does the job in $(x+6)$ hrs.
\therefore B does the job in $(x+1)$ hrs.
\therefore C does the job in $(2 x)$ hrs.
\therefore Amount of job done by A in $1 \mathrm{hr} .=\frac{1}{\mathrm{x}+6}$
\therefore Amount of job done by B in $1 \mathrm{hr} .=\frac{1}{\mathrm{x}+1}$
\therefore Amount of job done by C does in $1 \mathrm{hr} .=\frac{1}{2 \mathrm{x}}$

According to the question,

$$
\begin{aligned}
& \frac{1}{x+6}+\frac{1}{x+1}+\frac{1}{2 x}=\frac{1}{x} \\
& \Rightarrow \frac{1}{x+6}+\frac{1}{2 x}=\frac{1}{x}-\frac{1}{x+1} \\
& \Rightarrow \frac{2 x+x+6}{2 x^{2}+12 x}=\frac{x+1-x}{x^{2}+x}
\end{aligned}
$$

$$
\Rightarrow \frac{3 x+6}{2 x^{2}+12 x}=\frac{1}{x^{2}+x}
$$

$$
\Rightarrow \frac{3 x+6}{2 x+12}=\frac{1}{x+1}
$$

$$
\Rightarrow(3 x+6)(x+1)=2 x+12
$$

$$
\Rightarrow 3 x^{2}+3 x+6 x+6=2 x+12
$$

$$
\Rightarrow 3 x^{2}+9 x+6-12-2 x=0
$$

$$
\Rightarrow 3 x^{2}+7 x-6=0
$$

$$
\Rightarrow 3 x^{2}+9 x-2 x-6=0
$$

$\Rightarrow 3 \mathrm{x}(\mathrm{x}+3)-2(\mathrm{x}+3)=0$
$\Rightarrow(3 x-2)(x+3)=0$
$\Rightarrow x=-3$ or $\frac{2}{3}$

But negative value is not possible
$\therefore \mathrm{x}=\frac{2}{3}$
\therefore Amount of job done by A is $1 \mathrm{hr}=\frac{1}{\frac{2}{3}+6}$

$$
=\frac{\frac{1}{2+18}}{\frac{2}{3}}
$$

$$
=\quad \frac{3}{20}
$$

\therefore Amount of job done by B in hr $=\frac{1}{\frac{2}{3}+1}$

$$
=\frac{\frac{1}{2+3}}{5}
$$

$$
=\frac{3}{5}
$$

Let, time taken by A and B, together to do the job =y
$\therefore y\left(\frac{3}{20}+\frac{3}{5}\right)=1$
$\Rightarrow y\left(\frac{3+12}{20}\right)=1$
$\Rightarrow y\left(\frac{15}{20}\right)=1$
$\Rightarrow \mathrm{y}=\frac{20}{15}=\frac{4}{3}=1 \frac{1}{3} \mathrm{hrs}$.
$\therefore \mathrm{A}$ and B , together can do the work is $1 \frac{1}{3} \mathrm{hrs}$.

Q9.

$\because \quad$ The dots are 1 units apart, horizontally and vertically
$\therefore \mathrm{BD}=1+1+1+1=4$ units
\therefore Height of $\triangle \mathrm{ABD}=1+1=2$ units
\therefore Height of $\triangle \mathrm{BCD}=1$ unit
$\therefore \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \mathrm{x} 4 \mathrm{x} 2$
$=4$ sq. units
\therefore ar $(\triangle \mathrm{ABD})=\frac{1}{2} \mathrm{x} 4 \mathrm{x} 1$
$=2$ sq. units
$\therefore \operatorname{ar}(\triangle B C D)=\operatorname{ar}(\triangle A B D)+\operatorname{ar}(\triangle B C D)$
$=4+2$
$=6$ sq units.
\therefore Area of the given quadrilateral $=6$ sq. units

Q10. I	II	III	IV	V	
		1	3	5	7

15	13	11	9

	17	19	21	23
31	29	27	25	
	33	35	37	39

$47 \quad 45 \quad 43 \quad 41$

In column I:

$$
15=16 \times 1-1=16 k-1
$$

$$
\begin{aligned}
& 31=16 \times 2-1=16 \mathrm{k}-1 \\
& 47=16 \times 3-1=16 \mathrm{k}-1
\end{aligned}
$$

But, $2005 \neq 16 \mathrm{~K}-1$ for any integer K
$\therefore 2005$ is not in column I.

In column II :-

$$
\begin{aligned}
& 1=16 \times 0+1=16 \mathrm{k}+1 \\
& 13=16 \times 1-3=16 \mathrm{k}-3 \\
& 17=16 \times 1+1=16 \mathrm{k}+1 \\
& 29=16 \times 2-3=16 \mathrm{k}-3
\end{aligned}
$$

But, $\quad 2005 \neq 16 \mathrm{k}+1$

$$
2005 \neq 16 k+1
$$

$\therefore 2005$ is not a column II,

In column III :-

$$
\begin{aligned}
& 3=16 \times 0+3=16 \mathrm{k}+3 \\
& 11=16 \times 1-5=16 \mathrm{k}-5 \\
& 19=16 \times 1+3=16 \mathrm{k}+3 \\
& 27=16 \times 2-5=16 \mathrm{k}-5
\end{aligned}
$$

But, $\quad 2005 \neq 16 \mathrm{k}+3$

$$
2005 \neq 16 k-5
$$

for any integer k .
$\therefore 2005$ dosen't occur in column III,

In column IV :-

$$
\begin{aligned}
& 5=16 \times 0+1=16 \mathrm{k}+5 \\
& 9=16 \times 1-7=16 \mathrm{k}-7 \\
& 21=16 \times 1+5=16 \mathrm{k}+5 \\
& 25=16 \times 2-7=16 \mathrm{k}-7
\end{aligned}
$$

But, $\quad 2005 \neq 16 \mathrm{k}-7$ for any integer k .
But, $\quad 16 k+5=2005$

For $\mathrm{k}=125$
$\therefore 2005$ occurs in column IV.

