KVS Junior Mathematics Olympiad (JMO) - 2003

M.M. 100

Time : 3 hours
Note: (i) Please check that there are two printed pages and 10 questions in the question paper.
(ii) All questions carry equal marks.

1. Fill in the blanks
(a) The digits of the number 2978 are arranged first in descending order and then in ascending order. The difference between the resulting two numbers is \qquad
(b) Yash is riding his bicycle at a constant speed of 12 kilometers per hour. The number of metres he travels each minute is \qquad
(c) The square root of $35 \times 65 \times 91$ is \qquad
(d) The number 81 is 15% of \qquad
(e) A train leaves New Delhi at 9.45 am and reaches Agra at 12.58 pm . The time taken in the journey, in minutes, is \qquad
2. (a) Find the largest prime factor of 203203.
(b) Find the last two (tens' and units') digits of (2003) ${ }^{2003}$.
3. (a) Find the number of perfect cubes between 1 and 1000009 which are exactly divisible by 9 .
(b) If $x=5+2 \sqrt{6}$, find the value of
(i) $\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}$
(ii) $\mathrm{X}^{3}+\frac{1}{\mathrm{x}^{3}}$
4. (a) Solve :

$$
\frac{x^{2}-1}{x^{2}-4}-\frac{x^{2}-5}{x^{2}-8}=\frac{x^{2}-2}{x^{2}-5}-\frac{x^{2}-6}{x^{2}-9}
$$

(b) Find the remainder when $\mathrm{X}^{81}+\mathrm{X}^{49}+\mathrm{X}^{25}+\mathrm{X}^{9}+\mathrm{X}$ is divided by $x^{3}-x$.
5. (a) OPQ is a quadrant of a circle and semicircles are drawn on OP and OQ. Areas a and b are shaded. Find a / b.

(b) Assuming all vertical lines are parallel, all angles are right angles and all the horizontal lines are equally spaced, what fraction of figure is shaded ?

6. Alternate vertices of a regular hexagon are joined as shown. What fraction of the total area of a hexagon is shaded ? (Justify your answer)

7. In a competition consisting of 30 problems Neeta was given 12 points for each correct solution, and 7 points were subtracted from her score for each incorrect solution problems not attempted contributed 0 points to the score find the number of problems attempted correctly by Neeta.
8. A cube with each edge of lengths 4 units is painted green on all the faces. The cube is then cut into 64 unit cubes. How many of these small cubes have (i) 3 faces painted (ii) 2 faces painted (iii) one face painted (iv) no face painted.
9. Let PQR be an equilateral triangle with each side of length 3 units. Let U , V, W, X Y and Z divide the sides into unit lengths. Find the ratio of the area $\mathrm{U}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z divide the sides into unit lengths. Find the ratio of
the area U W X Y (shaded) to the area of the whole triangle PQR.

10. Five houses $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ and T are situated on the opposite side of a street from five other houses $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$ and Y as shown in the diagram :

Houses on the same side of the street are 20 metres apart A postman is trying to decide whether to deliver the letters using route PQRSTYXWVU or route

PUQVRWSXTY, and finds that the total distance is the same in each case. Find the total distance in metres.

KV JMO 2003 SOLUTIONS

Q.1.(a) The digits in ascending order are $=2789$

The digits is decending order are $=9872$
\therefore their difference $=9872-2789$
$=7083$
(b) Speed $=12 \mathrm{~km} / \mathrm{h}$
\therefore Speed in metres per minutes $\frac{\not \boxed{12} \times 200}{1 \times 60}$
\therefore He travels 200 m per minute.
(c) The square root of $35 \times 65 \times 91$

$$
\begin{aligned}
& =\sqrt{35 \times 65 \times 91} \\
& =\quad \sqrt{5 \times 7 \times 5 \times 13 \times 7 \times 13} \\
& =\quad \sqrt{5^{2} \times 7^{2} \times 13^{2}} \\
& =5 \times 7 \times 13=455
\end{aligned}
$$

(d) Let, the number $=\mathrm{x}$

$$
\therefore 15 \% \text { of } \mathrm{x}=81
$$

$\Rightarrow \quad \frac{15}{100} x=81$
$\Rightarrow \quad x=\frac{\left.\begin{array}{l}271 \times 20 \\ 5\end{array}\right)}{50}$

$$
=540
$$

\therefore The req. number $=540$.
(e) Difference between 9:45 A.M. and 12:58 P.M.

12 : 58 PM
-9: 45 AM
3h 13 min
\therefore Difference $=3 \mathrm{~h} 13 \mathrm{~min}$

$$
\begin{aligned}
& =\quad 3 \times 60+13 \\
& =\quad 180+13 \\
& =\quad 193 \mathrm{~min} .
\end{aligned}
$$

Q2.(a) 203203

$$
\begin{aligned}
& =\quad 7 \times 7 \times 11 \times 13 \times 29 \\
& =\quad 7^{2} \times 11 \times 13 \times 29
\end{aligned}
$$

\therefore largest prime factor of $203203=29$
(b) To find the last two digits of (2003) ${ }^{2003}$

$$
\begin{array}{rlrl}
& & 2003 & \equiv 3(\bmod 100) \\
\Rightarrow & 2003^{2} & \equiv 9(\bmod 100) \\
\Rightarrow & 2003^{4} & \equiv 81(\bmod 100)
\end{array}
$$

$$
\begin{equation*}
\equiv-19(\bmod 100) \tag{i}
\end{equation*}
$$

$$
\begin{align*}
\Rightarrow \quad 2003^{8} & \equiv(-19)(-19)(\bmod 100) \\
& \equiv 361(\bmod 100) \\
& \equiv-39(\bmod 100) \\
\Rightarrow \quad 2003^{16} & \equiv(-39)(-39)(\bmod 100) \\
& \equiv 1321(\bmod 100) \\
& \equiv 21(\bmod 100) \tag{ii}
\end{align*}
$$

Multiplying (i) and (ii),

$$
\begin{aligned}
& 2003^{20} \equiv(-19)(21)(\bmod 100) \\
& \equiv-299(\bmod 100) \\
& \equiv 1(\bmod 100) \\
& \therefore 2003^{20} \equiv 1(\bmod 100) \\
& \Rightarrow 2003^{2000} \equiv 1(\bmod 100) \\
& \Rightarrow(2003)^{2000} \mathrm{x}(2003)^{3} \equiv 1 \times 3 \times 3 \times 3(\bmod 100) \\
& \Rightarrow(2003)^{2003} \equiv 27(\bmod 100)
\end{aligned}
$$

\therefore The tens and units digits of (2003) 2003 are 2 and 7 .
Q. 3 (a) The numbers are :

$$
3^{3} \times 1^{3}=27>1
$$

$$
\begin{aligned}
& 3^{3} \times 2^{3}=216>1 \\
& 3^{3} \times 3^{3} \\
& 3^{3} \times 4^{3} \\
& : \times: \\
& : \times: \\
& 3^{3} \times 31^{3} \\
& 3^{3} \times 32^{3} \\
& 3^{3} \times 33^{3}=970309<1000009 \\
& 3^{3} \times 34^{3}=1061208>1000009
\end{aligned}
$$

\therefore There are 33 numbers satisfying the given condition.
3. (b)
(ii) $\mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}=$?

$$
\begin{aligned}
x+\frac{1}{x} & =5+2 \sqrt{6}+\frac{1}{5+2 \sqrt{6}} \times \frac{5-2 \sqrt{6}}{5-2 \sqrt{6}} \\
& =5+2 \sqrt{6}+\frac{5-2 \sqrt{6}}{5^{2}-(2 \sqrt{6})^{2}} \\
& =5+2 \sqrt{6}+\frac{5-2 \sqrt{6}}{25-24} \\
& =5+2 \sqrt{6}+5-2 \sqrt{6} \\
& =10
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\therefore x^{3} & +\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3 \cdot(x)\left(\frac{1}{x}\right)\left(x+\frac{1}{x}\right) \\
& =10^{3}-3 \times 10 \\
& =1000-30 \\
& =970
\end{aligned} \\
& \therefore x^{3}+\frac{1}{x^{3}}=970
\end{aligned}
$$

Q3. (b) $\quad x=5+2 \sqrt{6}$
(i) $\sqrt{\mathrm{X}}+\frac{1}{\sqrt{\mathrm{X}}}=$?
$\Rightarrow\left(\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}\right)^{2}=\mathrm{x}+\frac{1}{\mathrm{x}}+2 \cdot \sqrt{\mathrm{x}} \mathrm{x}\left(\frac{1}{\sqrt{\mathrm{x}}}\right)$

$$
=\quad 5+2 \sqrt{6}+\frac{1}{5+2 \sqrt{6}}+2
$$

$$
=\quad 5+2 \sqrt{6}+\frac{1}{5+2 \sqrt{6}} \times \frac{5-2 \sqrt{6}}{5-2 \sqrt{6}}+2
$$

$$
=7+2 \sqrt{6}+\frac{5-2 \sqrt{6}}{5^{2}-(2 \sqrt{6})^{2}}
$$

$$
=7+2 \sqrt{6}+\frac{5-2 \sqrt{6}}{25-24}
$$

$$
=7+2 \sqrt{6}+5-2 \sqrt{6}
$$

$$
=12
$$

$\therefore \sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}=\sqrt{12}=2 \sqrt{3}$

Q4. (a) $\frac{x^{2}-1}{x^{2}-4}-\frac{x^{2}-5}{x^{2}-8}=\frac{x^{2}-2}{x^{2}-5}-\frac{x^{2}-6}{x^{2}-9}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\left(\mathrm{x}^{2}-1\right)\left(\mathrm{x}^{2}-8\right)-\left(\mathrm{x}^{2}-5\right)\left(\mathrm{x}^{2}-4\right)}{\left(\mathrm{x}^{2}-4\right)\left(\mathrm{x}^{2}-8\right)} \\
& =\frac{\left(x^{2}-2\right)\left(x^{2}-9\right)-\left(x^{2}-6\right)\left(x^{2}-5\right)}{\left(x^{2}-5\right)\left(x^{2}-9\right)} \\
& \Rightarrow \quad \frac{\mathrm{x}^{4}-9 \mathrm{x}^{2}+8-\left[\mathrm{x}^{4}-9 \mathrm{x}^{2}+20\right]}{\mathrm{x}^{4}-12 \mathrm{x}^{2}+32} \\
& \Rightarrow \frac{x^{4}-11 x^{2}+18-\left[x^{4}-11 x^{2}+30\right]}{x^{4}-14 x^{2}+45} \\
& \Rightarrow \frac{-12}{x^{4}-12 x^{2}+32}=\frac{-12}{x^{4}-14 x^{2}+45} \\
& \Rightarrow x^{4}-14 x^{2}+45=x^{4}-12 x^{2}+32 \\
& \Rightarrow-14 x^{2}+12 x^{2}=32-45 \\
& \Rightarrow+2 x^{2}=+13 \\
& \Rightarrow \mathrm{x}= \pm \sqrt{\frac{13}{2}} \\
& \therefore \mathrm{x}=+\sqrt{\frac{13}{2}} \text { or }-\sqrt{\frac{13}{2}} \\
& \text { 4. (b) } x^{81}+x^{49}+x^{25}+x^{9}+x \\
& =x\left(x^{80}+x^{48}+x^{24}+x^{8}+1\right) \\
& \text { And } \mathrm{x}^{3}-\mathrm{x} \\
& =x\left(x^{2}-1\right)
\end{aligned}
$$

Dividing $=x^{80}+x^{48}+x^{24}+x^{8}+1$ by $x^{2}-1$, we get,

Quotient $=X^{78}+x^{76}+\ldots \ldots . . x^{48}+2 x^{46}+2 x^{44}+\ldots \ldots+2 x^{24}+3 x^{22}+3 x^{20}+$
$\ldots . . .+3 x^{8}+4 x^{6}+4 x^{4}+4 x^{2}+4$
Divisor $=x^{2}-1$

Then, remainder $=5$
Q5. (a)

$\operatorname{ar}(\mathrm{OABC})=\left(\frac{\mathrm{r}}{2}\right)^{2}$
$=\frac{r}{4}^{2}$
\therefore ar $($ Sector ABO$)=\frac{1}{4} \pi\left(\frac{\mathrm{r}}{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \pi \frac{\mathrm{r}}{}_{2}^{4} \\
& =\frac{\pi \mathrm{r}^{2}}{16}
\end{aligned}
$$

$$
\therefore \operatorname{ar}(\text { Sector } \mathrm{BOC})=\operatorname{ar}(\mathrm{OABC}-\text { Sector } \mathrm{ABO})
$$

$$
\begin{aligned}
& =\frac{\mathrm{r}^{2}}{4}-\frac{\pi \mathrm{r}^{2}}{16} \\
& =\frac{4 \mathrm{r}^{2}-\pi \mathrm{r}^{2}}{16}
\end{aligned}
$$

$\therefore \operatorname{ar}($ region $a)=\frac{r}{2}_{4}-2\left(\frac{4 r^{2}-\pi r^{2}}{16}\right)$

$$
=\frac{r^{2}}{4}-\frac{4 r^{2}-\pi r^{2}}{8}
$$

$$
=\frac{2 r^{2}-4 r^{2}-\pi r^{2}}{8}
$$

$$
=\frac{\pi \mathrm{r}^{2}-2 \mathrm{r}^{2}}{8}
$$

$\therefore \operatorname{ar}($ region b$)=\frac{\pi \mathrm{r}^{2}}{4}-\left(\frac{\mathrm{r}^{2}}{4}+\frac{2 . \pi \mathrm{r}^{2}}{16}\right)$

$$
=\frac{\pi \mathrm{r}^{2}}{4}-\frac{\mathrm{r}^{2}}{4}+\frac{\pi \mathrm{r}^{2}}{8}
$$

$$
=\frac{2 \pi \mathrm{r}^{2}-2 \mathrm{r}^{2}+\pi \mathrm{r}^{2}}{8}
$$

$$
=\frac{\pi \mathrm{r}^{2}-2 \mathrm{r}^{2}}{8}
$$

$\therefore \quad \frac{\mathrm{a}}{\mathrm{b}}=\frac{\frac{\pi \mathrm{r}^{2}-2 \mathrm{r}^{2}}{8}}{\frac{\pi \mathrm{r}^{2}-2 \mathrm{r}^{2}}{8}}$
$=1$
$\therefore \frac{\mathrm{a}}{\mathrm{b}}=1$
5. (b)

Bringing down all the shaded portions in one line, we have,

The shaded portion covers exactly $1 / 4^{\text {th }}$ of the total area.
$\therefore 1 / 4^{\text {th }}$ portion of the figure is shaded.

Q6.

So, it is clear from the above figure that, the regular hexagon is divided into
12 equilateral congruent triangles and 12 other triangles of which when two are taken they form one triangle of area equal to one triangle of inner hexagon.
\because The shaded region covers 6 triangles.
\therefore The whole hexagon covers $\left(12+\frac{12}{2}\right)$ triangles i.e. 18 triangles.
\therefore Fraction of the shaded area $6 / 18^{\text {th }}$ of the hexagon
$=1 / 3^{\text {rd }}$ of the bigger hexagon

Q7. INSUFFICIENT INFORMATION GIVEN

 SOLUTION NOT POSSIBLEQ8.

(i) Cubes with 3 faces painted.

No. of cubes with 3 faces painted $=8$
(ii) Cubes with 2 faces painted.

No. of cubes with 2 faces painted $=24$
(iii) Cubes with 1 face painted.

No. of cubes with 1 face painted $=24$
(iv) Cubes with no face painted.

No. of cubes with no faces painted $=8$

Q9.

In $\Delta \mathrm{UQW}$,
$\mathrm{UQ}=2$
$\mathrm{QW}=1$
$\angle \mathrm{UQW}=60^{\circ}$
$\frac{\mathrm{QW}}{\mathrm{UQ}}=\frac{1}{2}=\cos 60$
$=\cos \angle \mathrm{UQW}$

Hence, $\Delta \mathrm{UWQ}$ must be right triangle, with $\angle \mathrm{QWU}=90^{\circ}$

$$
\begin{aligned}
\therefore \mathrm{UW} & =\sqrt{\mathrm{UQ}^{2}-\mathrm{QW}^{2}} \\
& =\sqrt{2^{2}-1^{2}} \\
& =\sqrt{4-1}
\end{aligned}
$$

$$
=\sqrt{3}
$$

$\therefore(\Delta \mathrm{UWQ})=\frac{1}{2} \mathrm{x}$ QW x UW
$=\frac{1}{2} \times 1 \mathrm{x} \sqrt{3}$
$=\frac{\sqrt{3}}{2}$ sq.units

Similarly,
In \triangle PUY,
$\mathrm{PU}=1$
$P Y=2$
$\angle \mathrm{UPY}=60^{\circ}$
$\therefore \frac{\mathrm{PU}}{\mathrm{PY}}=\frac{1}{2}=\cos 60$
$=\cos \angle \mathrm{UPY}$
$\therefore \triangle \mathrm{PUY}$ must be right triangle, with $\angle \mathrm{PUY}=90^{\circ}$

$$
\begin{aligned}
\therefore \mathrm{UY} & =\sqrt{\mathrm{PY}^{2}-\mathrm{PU}^{2}} \\
& =\sqrt{2^{2}-1^{2}} \\
& =\sqrt{4-1} \\
& =\sqrt{3}
\end{aligned}
$$

$\therefore \operatorname{ar}(\triangle \mathrm{PUY})=\frac{1}{2} \mathrm{x}$ PU x UY

$$
\begin{aligned}
& =\frac{1}{2} \times 1 \mathrm{x} \sqrt{3} \\
& =\frac{\sqrt{3}}{2} \text { sq.units }
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \operatorname{ar}(\mathrm{XYR})=\frac{\sqrt{3}}{2} x 1^{2} \\
& =\frac{\sqrt{3}}{4} \text { sq.units }
\end{aligned}
$$

$$
\operatorname{ar}(\triangle \mathrm{ABC})=\frac{\sqrt{3}}{4} \times 3^{2}
$$

$$
=\frac{9 \sqrt{3}}{4} \text { sq.units }
$$

$$
\therefore \operatorname{ar}(\mathrm{UWXY})=\operatorname{ar}(\triangle \mathrm{ABC})-[\operatorname{ar}(\mathrm{PUY})+\operatorname{ar}(\mathrm{UWQ})+\operatorname{ar}(\mathrm{XYR})]
$$

$$
\begin{aligned}
& =\frac{9 \sqrt{3}}{4}-\left[\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{4}\right] \\
& =\frac{9 \sqrt{3}}{4}-\left[\frac{2 \sqrt{3}+2 \sqrt{3}+\sqrt{3}}{4}\right] \\
& =\frac{9 \sqrt{3}}{4}-\frac{5 \sqrt{3}}{4} \\
& =\frac{9 \sqrt{3}-5 \sqrt{3}}{4} \\
& =\frac{4 \sqrt{3}}{4} \\
& =\sqrt{3} \text { sq.units }
\end{aligned}
$$

\therefore ar $(\mathrm{UWXY})=\sqrt{3}$ sq.units

Q10.

Let, $\mathrm{PV} \quad=\mathrm{QW}=\mathrm{RX}=\mathrm{SY}=\mathrm{TX}$
$=\mathrm{SW}=\mathrm{RV}=\mathrm{QU}=\mathrm{x}$
and $\mathrm{PU}=\mathrm{TY}=\mathrm{y}$
\therefore In case of route P Q R S T Y X W V U,
Total Distance $=\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{ST}+\mathrm{TY}+\mathrm{YX}+\mathrm{XW}+\mathrm{WV}+\mathrm{VU}$
$=20+20+20+20+y+20+20+20+20$
$=160+y$
In case of route P U Q V R W S X T Y,
Total Distance $=\mathrm{PU}+\mathrm{UQ}+\mathrm{QV}+\mathrm{VR}+\mathrm{RW}+\mathrm{WS}+\mathrm{SX}+\mathrm{XT}+\mathrm{TY}$
$=\quad y+x+y+x+y+x+y+x+y$
$=4 x+5 y$
given,

$$
\begin{aligned}
& 160+y=4 x+5 y \\
\Rightarrow \quad & 160=4 x+4 y
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad x+y=40 \tag{i}
\end{equation*}
$$

Considering $\triangle \mathrm{PUV}$

By Pythagoras theorem,

$$
\begin{aligned}
& x^{2}-y^{2}=20^{2} \\
& \Rightarrow \quad(x+y)(x-y)=400
\end{aligned}
$$

$$
\Rightarrow \quad x+y=\frac{400}{x-y}
$$

$$
\Rightarrow \quad 40=\frac{4 \theta 0}{x-y}
$$

$$
[\because x+y=10 \text { from }(i)]
$$

$$
\begin{equation*}
\Rightarrow x-y=10 \tag{ii}
\end{equation*}
$$

$$
x+y=40
$$

$$
x-y=10
$$

$2 y=30$
$\Rightarrow y=15$

Total distance $\quad=160+\mathrm{y}$
$=160+15$
$=175 \mathrm{~m}$

