KVS Junior Mathematics Olympiad (JMO) - 2001

M.M. 100

Time : 3 hours
Note : (i) Please check that there are two printed pages and ten question in all.
(ii) Attempt all questions. All questions carry equal marks.

1. Fill in the blanks :
(a) If $x+y=1, x^{3}+y^{3}=4$, then $x^{2}+y^{2}=\ldots \ldots \ldots$
(b) After 15 litres of petrol was added to the fuel tank of a car, the tank was 75% full. If the capacity of the tank is 28 litres, then the number of litres in the tank before adding the petrol was
(c) The perimeter of a rectangle is 56 metres. The ratio of its length to width is $4: 3$. The length of the diagonal in metres is \qquad
(d) If April 23 falls on Tuesday, then March 23 of the same year was a
(e) The sum of the digits of the number $2^{2000} 5^{2004}$ is
2. (a) Arrange the following in ascending order :
$2^{5555}, 3^{3333}, 6^{2222}$
(b) Two rectangles, each measuring $3 \mathrm{~cm} \times 7 \mathrm{~cm}$, are placed as in the adjoining figure :

Find the area of the overlapping portion (shaded) in cm^{2}.
3. (a) Solve :

$$
\frac{\log _{10}\left(35-x^{3}\right)}{\log _{10}(5-x)}=3
$$

(b) Simplify :

$$
\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{(a-b)(b-c)(c-a)}{(a+b)(b+c)(c+a)}
$$

4. (a) Factorize :

$$
(x-y)^{3}+(y-z)^{3}+(z-x)^{3}
$$

(b) If $x^{2}-x-1=0$, then find the value of $x^{3}-2 x+1$
5. $A B C D$ is a square. A line through B intersects $C D$ produced at E, the side AD at F and the diagonal AC at G .

If $\mathrm{BG}=3$, and $\mathrm{GF}=1$, then find the length of FE ,
6. (a) Find all integers n such that $\left(n^{2}-n-1\right)^{n+2}=1$
(b) If $x=\frac{4 a b}{a+b}$, find the value of $\frac{x+2 a}{x-2 a}+\frac{x+2 b}{x-2 b}$
7. (a) Find all the positive perfect cubes that divide 9^{9}.
(b) Find the integer closest to $100(12-\sqrt{143})$
8. In a triangle $\mathrm{ABC}, \angle \mathrm{BCA}=90^{\circ}$. Points E and F lie on the hypotenuse AB such that $\mathrm{AE}=\mathrm{AC}$ and $\mathrm{BF}=\mathrm{BC}$. Find $\angle \mathrm{ECF}$.

9. An ant crawls 1 centimetre north, 2 centimetres west, 3 centimetres south, 4 centimetres east, 5 centimetres north and so on, at 1 centimetre per second. Each segment is 1 centimetre longer than the preceding one, and at the end of a segment, the ant makes a left turn. In which direction is the ant moving 1 minute after the start?
10. Find the lengths of the sides of a triangle with 20,28 and 35 as the lengths of its altitudes.

SOLUTION KV JMO 2001

Q1.
(i) 7
(ii) 6 litres
(iii) 20 m
(iv) Friday
(v) 13

Q2.
(a) $2^{5555}, 3^{3333}, 6^{2222}$

$$
2^{5}=32
$$

$$
3^{3}=27
$$

$$
6^{2}=36
$$

$\therefore 3^{3}<2^{5}<6^{2}$
$\therefore \quad 3^{3333}<2^{5555}<6^{2222}$
\therefore The required order of the three numbers is :-
$3^{3333}, 2^{5555}, 6^{2222}$
Q2(b)

\because Two rectangles each measuring $3 \mathrm{~cm} \times 7 \mathrm{~cm}$ are placed in this manner.
\therefore The four triangles formed must be congruent to each other.
$\therefore \triangle \mathrm{EAG} \cong \triangle \mathrm{BCG}$
$\therefore \mathrm{AG}=\mathrm{BG}$
and $\mathrm{EG}=\mathrm{CG}$
Let, $\mathrm{BG}=\mathrm{x}$
$\therefore \mathrm{AG}=\mathrm{AB}-\mathrm{BG}$
$=7-\mathrm{x}$
$\therefore \mathrm{CG}=\mathrm{AG}=7-\mathrm{x}$
\therefore In $\triangle \mathrm{BCG}$, we have,

$$
\mathrm{BC}=3
$$

$B G=x$
$C G=7-x$
\therefore By Pythagoras theorem, In $\triangle B C G$, we have,

$$
\begin{aligned}
& \mathrm{CG}^{2}=\mathrm{BC}^{2}+\mathrm{BG}^{2} \\
& \Rightarrow(7-\mathrm{x})^{2}=3^{2}+\mathrm{x}^{2} \\
& \Rightarrow 49-14 \mathrm{x}+\mathrm{x}^{2}=9+\mathrm{x}^{2}
\end{aligned}
$$

$$
\Rightarrow 49-9=14 x
$$

$$
\Rightarrow 40=14 \mathrm{x}
$$

$$
\Rightarrow x=\frac{40}{14}
$$

$\Rightarrow x=\frac{20}{7}$
$\therefore A G=7-x$
$=7-\frac{20}{7}$
$=\frac{49-20}{7}$
$=\frac{29}{7}$
$\because \quad D C \| A B$
$\Rightarrow \quad \mathrm{HC} \| \mathrm{AG}$
Similarly AH || GC
$\therefore \mathrm{AGCH}$ is a parallelogram
\therefore Area of the $A G C H=($ Base $) \times($ Height $)$
$=\mathrm{AG} \times \mathrm{BC}$
$=\frac{29}{7} \times 3$

$$
\begin{aligned}
& =\frac{87}{7} \\
& =12 \frac{3}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

3.(a) $\frac{\log _{10}\left(35-\mathrm{x}^{3}\right)}{\log _{10}(5-\mathrm{x})}=3$
$\Rightarrow \log _{10}\left(35-x^{3}\right)=3 \cdot \log _{10}(5-x)$
$\Rightarrow \log _{10}\left(35-x^{3}\right)=\log _{10}(5-x)^{3}$
$\Rightarrow 35-x^{3}=(5-x)^{3}$
$\Rightarrow 35-x^{p}=125-x^{\beta}+3(5)(-x)(5-x)$
$\Rightarrow 35=125-15 \mathrm{x}(5-\mathrm{x})$
$\Rightarrow 35=125-75 x+15 x^{2}$
$\Rightarrow 15 x^{2}-75 x+125-35=0$
$\Rightarrow 15 x^{2}-75 x+90=0$
$\Rightarrow x^{2}-5 x+6=0$
$\Rightarrow x^{2}-3 x-2 x+6=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-3)-2(\mathrm{x}-3)=0$
$\Rightarrow(\mathrm{x}-3)(\mathrm{x}-2)=0$
$\therefore \mathrm{x}=3$ or 2

Q3. (b)

$$
\begin{aligned}
& \frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{(a-b)(b-c)(c-a)}{(a+b)(b+c)(c+a)} \\
& =(a-b)(b+c)(c+a)+(b-c)(a+b)(c+a) \\
& =\frac{+(c-a)(a+b)(b+c)+(a-b)+(b-c)(c-a)}{(a+b)(b+c)(c+a)} \\
& =(c+a)[(a-b)(b+c)+(b-c)(a+b)] \\
& =\frac{+(c-a)[(a-b)+(b-c)+(a+b)(b+c)]}{(a+b)(b+c)(c+a)} \\
& =(c+a)\left[a b+\not 2 c-b^{2}-b c+a b+\not b^{2}-\not a c-b c\right] \\
& =\frac{+(c-a)\left[a b+a c-b^{2}+b c+a b+b^{2}-a c+b c\right]}{(a+b)(b+c)(c+a)} \\
& =\frac{(c+a)(2 a b-2 b c)+(c-a)(2 a b+2 b c)}{(a+b)(b+c)(c+a)} \\
& =\frac{2 a b c-2 b c^{2}+2 a^{2} b-2 b c+2 a b c+2 b c^{2}-2 a^{2} b-2 a b c}{(a+b)(b+c)(c+a)} \\
& =\frac{0}{(a+b)(b+c)(c+a)} \\
& =0
\end{aligned}
$$

4. (a)
$=(x-y)^{3}+(y-z)^{3}+(z-x)^{3}$

$$
\begin{aligned}
& =(x-y+y-z)\left[(x-y)^{2}+(y-z)^{2}+(x-y)(y-z)\right]+(z-x)^{3} \\
& =(x-z)\left[x^{2}+y^{2}-2 x y+y^{2}+z^{2}-2 y z+x y-x z-y^{2}+y z\right]+(z-x)^{3} \\
& =(x-z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)-(x-z)^{3} \\
& \left.=(x-z)\left[x^{2}+y^{2}+z^{2}-x y-y z-z x\right)-(x-z)^{2}\right] \\
& =(x-z)\left[x^{2}+y^{2}+z^{2}-x y-y z-z x-\not x^{2}-\not z^{2}+2 x z\right] \\
& =(x-z)\left[y^{2}-y z-x y+x z\right] \\
& =(x-z)[y(y-z)-x(y-z)] \\
& =(x-z)(y-x)(y-z) \\
& =(x-y)(y-z)(z-x)
\end{aligned}
$$

4. (b) $x^{2}-x-1=0$

$$
x^{3}-2 x+1=?
$$

Dividing $\left(x^{3}-2 x+1\right)$ by $\left(x^{2}-x-1\right)$, we get,

$$
\begin{gathered}
x^{2}-x-1 \sqrt{x^{3}-2 x+1} \\
\frac{{ }_{-} x^{3}-{ }_{+} x^{2}-{ }_{+} x}{x^{2}-x+1} \\
\frac{{ }_{-} x^{2}-{ }_{+} x+{ }_{+} 1}{2} \\
\therefore x^{3}-2 x+1=\left(x^{2}-x-1\right)(x+1)+2 \\
\Rightarrow x^{3}-2 x+1=0 x(x+1)+2 \\
\Rightarrow x^{3}-2 x+1=0+2
\end{gathered}
$$

$\Rightarrow \mathrm{x}^{3}-2 \mathrm{x}+1=2$
$\therefore \mathrm{x}^{3}-2 \mathrm{x}+1=2$

Q5

Given :
ABCD is a square
$B G=3$
$\mathrm{GF}=1$
$\mathrm{BE}=$?
Let, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=\mathrm{a}$
Now,

In $\triangle \mathrm{BCG}$ and $\triangle \mathrm{FAG}$,
$\angle \mathrm{BCG}=\angle \mathrm{FAG}\left(\right.$ Each $\left.=45^{\circ}\right)$
$\angle \mathrm{BGC}=\angle \mathrm{AGF}$ (Vertically opposite angles)
$\therefore \Delta \mathrm{BCG} \sim \Delta \mathrm{FAG}$ by AA rule
$\therefore \frac{\mathrm{BC}}{\mathrm{AF}}=\frac{\mathrm{BG}}{\mathrm{GF}}$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{AF}}=\frac{3}{1}$
$\Rightarrow \mathrm{AF}=\frac{\mathrm{a}}{3}$
$\therefore \mathrm{DF}=\mathrm{AD}-\mathrm{AF}=\mathrm{a}-\frac{\mathrm{a}}{3}=\frac{2}{3} \mathrm{a}$

Now,
In $\triangle \mathrm{ABF}$ and $\triangle \mathrm{DEF}$,
$\angle \mathrm{A}=\angle \mathrm{D}=90^{\circ}$
$\angle \mathrm{AFB}=\angle \mathrm{DFE}$ (Vertically opposite angles)
$\therefore \triangle \mathrm{ABF} \sim \triangle \mathrm{DEF}$ by AA rule
$\therefore \frac{\mathrm{BF}}{\mathrm{AF}}=\frac{\mathrm{EF}}{\mathrm{DF}}$
$\Rightarrow \frac{\mathrm{BF}}{\frac{\mathfrak{x}}{\mathfrak{B}}}=\frac{\mathrm{EF}}{\frac{2}{\mathfrak{B}} \mathscr{X}}$
$\Rightarrow 2 . \mathrm{BF}=\mathrm{EF}$
$\Rightarrow 2 \mathrm{X} 4=\mathrm{EF}$
$\Rightarrow \mathrm{EF}=8$
$\therefore \mathrm{BE}=\mathrm{BF}+\mathrm{FE}$
$=4+8$
$=12$ units.

Q6.(a) $\left(n^{2}-n-1\right)^{n+2}=1$
$\Rightarrow\left(\mathrm{n}^{2}-\mathrm{n}-1\right)^{\mathrm{n}+2}=(1)^{\mathrm{n}+2}$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}-1=1$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}-2=0$
$\Rightarrow \mathrm{n}^{2}-2 \mathrm{n}+\mathrm{n}-2=0$
$\Rightarrow \mathrm{n}(\mathrm{n}-2)+1(\mathrm{n}-2)=0$
$\Rightarrow(\mathrm{n}-2)(\mathrm{n}+1)=0$
$\therefore \mathrm{n}=2$ or -1

Q6. (b) $\quad x=\frac{4 a b}{a+b}$

$$
\frac{x+2 a}{x-2 a}+\frac{x+2 b}{x-2 b}=?
$$

$\frac{x+2 a}{x-2 a}+\frac{x+2 b}{x-2 b}$

$$
\begin{aligned}
& =\frac{x+2 a}{x-2 a}+1+\frac{x+2 b}{x-2 b}-1 \\
& =\frac{x+2 a+x-2 a}{x-2 a}+\frac{x+2 b-x+2 b}{x-2 b} \\
& =\frac{2 x}{x-2 a}+\frac{4 b}{x-2 b} \\
& =\frac{2 x}{x-2 a}-2+\frac{4 b}{x-2 b}+2 \\
& =\frac{2 x-2 x+4 a}{x-2 a}+\frac{4 b+2 x-4 b}{x-2 b}
\end{aligned}
$$

$$
=\frac{4 a}{x-2 a}+\frac{2 x}{x-2 b}
$$

$$
=\frac{4 a}{\frac{4 a b}{a+b}}+\frac{2 x \frac{4 a b}{a+b}}{\frac{4 a b}{a+b}-2 b}
$$

$$
=\frac{4 a(a+b)}{4 a b-2 a^{2}-2 a b}+\frac{8 a b}{4 a b-2 a b-2 b^{2}}
$$

$$
=\frac{4 a^{2}+4 a b}{2 a b-2 a^{2}}+\frac{8 a b}{2 a b-2 b^{2}}
$$

$$
=\frac{2 a+2 b}{b-a}+\frac{4 a}{a-b}
$$

$=\frac{-2 a-2 b+4 a}{a-b}$
$=\frac{2 a-2 b}{a-b}$
$=\frac{2(a-b)}{(a-b)}$
$=2$
Q7. (a) 9^{9}
$=\left(3^{3}\right)^{9}$
$=(3)^{27}$
The positive perfect cubes that divide 9^{9} are :
$1^{3}, 3^{3},\left(3^{2}\right)^{3},\left(3^{3}\right)^{3},\left(3^{4}\right)^{3},\left(3^{5}\right)^{3},\left(3^{6}\right)^{3},\left(3^{7}\right)^{3},\left(3^{9}\right)^{3}$.
i.e. 10 numbers
(b) $100(12-\sqrt{143})$
$\because \sqrt{143}<\sqrt{144}$
i.e. $\sqrt{143}<12$
and $\sqrt{143}$ is less than 12 by a very small margin.
\therefore The closest integer to $100(12-\sqrt{143})$
is , 100 .
8.

Given :
$\angle \mathrm{BCA}=90^{\circ}$
$\mathrm{AE}=\mathrm{AC}$
$B F=B C$
$\angle \mathrm{ECF}=$?
$\because \angle \mathrm{BCA}=90$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=90^{\circ}$
In $\triangle \mathrm{ACE}$
$\mathrm{AE}=\mathrm{AC}$
$\therefore \angle \mathrm{AEC}=\angle \mathrm{ACE}=\mathrm{x}+\mathrm{y}$
In $\triangle \mathrm{BCF}$,
$\because B F=C F$
$\therefore \angle \mathrm{BCF}=\angle \mathrm{BFC}=\mathrm{x}+\mathrm{z}$
\therefore In \triangle CFE,
$\angle \mathrm{FCE}+\angle \mathrm{CFE}+\angle \mathrm{CEF}=180$
$\Rightarrow \mathrm{x}+\mathrm{x}+\mathrm{z}+\mathrm{x}+\mathrm{y}=180$

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{x}+\mathrm{x}+\mathrm{y}+\mathrm{z}=180 \\
& \Rightarrow 2 \mathrm{x}+90=180 \\
& \Rightarrow 2 \mathrm{x}=90 \\
& \Rightarrow \mathrm{x}=45^{\circ} \\
& \therefore \angle \mathrm{ECF}=\mathrm{x} \\
& \qquad=45^{\circ} \\
& \therefore \angle \mathrm{ECF}=45^{\circ} \\
& 9 .
\end{aligned}
$$

So, we get that,
The ant always travels $(4 \mathrm{k}+1) \mathrm{cm}$ North,
The ant always travels $(4 \mathrm{k}+2) \mathrm{cm}$ West,
The ant always travels $(4 k+3) \mathrm{cm}$ South,

The ant always travels $(4 \mathrm{k}+4) \mathrm{cm}$ East,
\therefore In 1 min the ant travels, distance $=60 \times 1 \mathrm{~cm}$

We get the following AP,
$1,2,3, \ldots \ldots$
$\mathrm{a}=1$
$\mathrm{d}=1$
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\Rightarrow 60=\frac{\mathrm{n}}{2}[2 \times 1+(\mathrm{n}-1) \times 1]$
$\Rightarrow 120=\mathrm{n}[2+\mathrm{n}-1]$
$\Rightarrow 120=\mathrm{n}[\mathrm{n}+1]$
$\Rightarrow 120=\mathrm{n}^{2}+\mathrm{n}$
$\Rightarrow \mathrm{n}^{2}+\mathrm{n}-120=0$
$\therefore \mathrm{n}=\frac{-1 \pm \sqrt{1^{2}-4(1)(-120)}}{2 \times 1}$
$=\frac{-1 \pm \sqrt{1+480}}{2}$
$\frac{-1 \pm \sqrt{481}}{2}$
$\frac{-1 \pm 22}{2} \quad\left[22^{2}=484\right]$
$\frac{21}{2}$ [Taking the positive value]
$=10 \frac{1}{2}$
But we'll have to take, $\mathrm{n}=11$

$$
\begin{aligned}
\therefore a_{11} & =1+10 \times 1 \\
& =1+10 \\
& =11 \\
& =4 \times 2+3
\end{aligned}
$$

\therefore The ant was traveling towards South.

Q10.

$h_{\mathrm{a}}=20$
$\mathrm{h}_{\mathrm{b}}=28$
$h_{c}=35$
$\Delta=\frac{1}{2} \mathrm{ax} \mathrm{h}_{\mathrm{a}} \Rightarrow \mathrm{a}=\frac{2 \Delta}{\mathrm{~h}_{\mathrm{a}}}$

$$
=\frac{2 \Delta}{20}=\frac{\Delta}{10}
$$

$\Delta=\frac{1}{2} \mathrm{bxh}_{\mathrm{b}} \Rightarrow \mathrm{b}=\frac{2 \Delta}{\mathrm{~h}_{\mathrm{b}}}$

$$
=\frac{2 \Delta}{28}=\frac{\Delta}{14}
$$

$\Delta=\frac{1}{2} \mathrm{cx} \mathrm{h}_{\mathrm{c}} \Rightarrow \mathrm{c}=\frac{2 \Delta}{\mathrm{~h}_{\mathrm{c}}}=\frac{2 \Delta}{35}$
$\therefore a=\frac{2 \Delta}{20}$
$b=\frac{2 \Delta}{28}$
$c=\frac{2 \Delta}{35}$
$\therefore S=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{1}{2}\left[\frac{2 \Delta}{20}+\frac{2 \Delta}{28}+\frac{2 \Delta}{35}\right]$
$=\Delta\left[\frac{1}{20}+\frac{1}{28}+\frac{1}{35}\right]$
$\mathrm{S}-\mathrm{a}=\Delta\left[\frac{1}{20}+\frac{1}{28}+\frac{1}{35}\right]-\frac{2 \Delta}{20}$

$$
\begin{aligned}
& =\Delta\left[\frac{1}{28}+\frac{1}{35}-\frac{1}{20}\right] \\
& =\Delta\left[\frac{35 \times 20+28 \times 20-28 \times 35}{20 \times 28 \times 35}\right] \\
& =\Delta\left[\frac{700+560-980}{20 \times 28 \times 35}\right] \\
& =\Delta\left[\frac{\frac{10}{280}}{20 \times 28 \times 35}\right] \\
& =\Delta\left[\frac{1}{70}\right] \\
& =\frac{\Delta}{70} \\
& S-b=\Delta\left[\frac{1}{20}+\frac{1}{28}+\frac{1}{35}\right]-\frac{2 \Delta}{28} \\
& =\Delta\left[\frac{1}{20}+\frac{1}{35}-\frac{1}{28}\right] \\
& =\Delta\left[\frac{35 \times 28+28 \times 20-20 \times 35}{20 \times 28 \times 35}\right] \\
& =\Delta\left[\frac{980+560-700}{20 \times 28 \times 35}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\Delta\left[\frac{-42}{\frac{-840^{6^{3}}}{20 \times 28 \times 35}} \underset{14}{20 \times 2}\right] \\
& =\Delta\left[\frac{3}{70}\right] \\
& =\frac{3 \Delta}{70} \\
& S-c=\Delta\left[\frac{1}{20}+\frac{1}{28}+\frac{1}{35}\right]-\frac{2 \Delta}{35} \\
& =\Delta\left[\frac{1}{20}+\frac{1}{28}-\frac{1}{35}\right] \\
& =\Delta\left[\frac{35 \times 28+20 \times 35-20 \times 28}{20 \times 28 \times 35}\right] \\
& =\Delta\left[\frac{980+700-560}{20 \times 28 \times 35}\right] \\
& =\Delta\left[\frac{1120^{2}}{20 \times 28 \times 35}\right] \\
& =\Delta\left[\frac{2}{35}\right] \\
& =\frac{2 \Delta}{35} \\
& \therefore \Delta=\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\Delta\left[\frac{1}{20}+\frac{1}{28}+\frac{1}{35}\right]\left[\frac{\Delta}{70}\right]\left[\frac{3 \Delta}{70}\right]\left[\frac{2 \Delta}{35}\right]} \\
& =\Delta^{2} \sqrt{\frac{2240}{20 \times 28 \times 35} \times \frac{1}{70} \times \frac{3}{70} \times \frac{2}{35}} \\
& =\Delta^{2} \sqrt{\frac{16 \times 3}{28 \times 35 \times 10 \times 35 \times 35}} \\
& =\Delta^{2} \sqrt{\frac{6}{35 \times 35 \times 35 \times 35}} \\
& =\Delta^{2} \frac{\sqrt{6}}{35 \times 35} \\
& \Rightarrow \Delta=\Delta^{2} \frac{\sqrt{6}}{35 \times 35}= \\
& \therefore \Delta=\frac{35 \times 35}{\sqrt{6}} \\
& \therefore \mathrm{a}=\frac{2 \Delta}{20} \\
& \mathrm{a}=\frac{245 \sqrt{6}}{6} \\
& \mathrm{~b}=\frac{2 \Delta}{28} \\
& 12 \\
& \hline 175 \sqrt{6} \\
& \hline
\end{aligned}
$$

$$
\mathrm{c}=\frac{2 \Delta}{35}=\frac{35 \sqrt{6}}{3} \text { units. }
$$

