Indian National Physics Olympiad – 2011 Roll Number: P11

INPhO – 2011

Duration: Three Hours

Date: 30th January 2011 Maximum Marks: **65**

Please fill in all the data below correctly. The contact details provided here would be used for all further correspondence.

Full Name (BLOCK letters) Ms. / Mr.:

Male / Female	Date of Birth (dd/mm/yyyy):	
Name of the school /	junior college:	

Class: XI/ XII

Board: ICSE / CBSE / State Board / Other

Address for correspondence (include city and PIN code): _____

	PIN Code:
Telephone (with area code):	Mobile:
Email address: https://c	ofacademy.in

Besides the International Physics Olympiad, do you also want to be considered for the Asian Physics Olympiad? The APhO - 2011 will be held from April 30- May 07 and your presence will be required in Delhi/Israel from April 22 to May 08, 2011.

Yes/No.

I have read the procedural rules for INO and agree to abide by them.

Signature

(Do not write below this line)

MARKS

Que.	1	2	3	4	5	6	7	Total
Marks								

HOMI BHABHA CENTRE FOR SCIENCE EDUCATION Tata Institute of Fundamental Research V. N. Purav Marg, Mankhurd, Mumbai, 400 088

Instructions:

- 1. Write your Roll Number on every page of this booklet.
- 2. Fill out the attached performance card. Do not detach it from this booklet.
- 3. Booklet consists of 26 pages (excluding this sheet) and seven (7) questions.
- 4. Questions consist of sub-questions. Write your **detailed answer** in the **blank space** provided below the sub-question and **final answer** to the sub-question in the **smaller box** which follows the blank space.
- 5. Extra sheets are also attached at the end in case you need more space. You may also use these extra sheets for rough work.
- 6. Computational tools such as calculators, mobiles, pagers, smart watches, slide rules, log tables etc. are **not** allowed.
- 7. This entire booklet must be returned.

Table of Information

Speed of light in vacuum	c	=	$3.00\times10^8~{\rm m\cdot s^{-1}}$
Planck's constant	h	=	$6.63 \times 10^{-34} \text{ J} \cdot \text{s}$
Universal constant of Gravitation	G	=	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Magnitude of the electron charge	e	=	$1.60 \times 10^{-19} \text{ C}$
Mass of the electron	m_e	=	$9.11 \times 10^{-31} \text{ kg}$
Stefan-Boltzmann constant	σ	F	$5.67 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$
Permittivity constant	ϵ_0	<u>_</u>	$8.85 \times 10^{-12} \text{ F} \cdot \text{m}^{-1}$
Permeability constant	μ_0	=	$4\pi \times 10^{-7} \text{ H} \cdot \text{m}^{-1}$
Acceleration due to gravity	g	=	$9.81 \text{ m} \cdot \text{s}^{-2}$
Universal Gas Constant	R	=	8.31 J· K^{-1} ·mole ⁻¹

1. A long wire of radius 'a' is carrying a direct current I. From its surface at point A, an electron of charge -e (e > 0) escapes with velocity v_0 perpendicular to this surface (see Fig.(1)). Ignore gravity.

[2.5 + 4 + 1.5 = 8]

Figure 1:

(a) At x and y the components of the velocity are v_x and v_y respectively. Obtain the components of force F_x and F_y on the electron at any arbitrary point $\{x, y\}$.

$$F_x =$$
 $F_y =$

(b) Integrate the equation of motion to obtain v_x .

 $v_x =$

(c) Find the maximum distance x_{max} of electron from the axis of the wire before it turns back.

https://gofacademy.in

2. In a modified Young's double slit experiment the region between screen and slits is immersed in a liquid whose refractive index varies with time t (in seconds) as $\mu_l = 2.50 - 0.25t$ until it reaches a steady state value 1.25. The distance between the slits and the screen is D = 1.00 m and the distance between the slits S_1 and S_2 is $d = 2.00 \times 10^{-3}$ m. A glass plate of thickness $t_g = 3.60 \times 10^{-5}$ m and refractive index $\mu_g = 1.50$ is introduced in front of one of the slits. Note that the illuminations at S_1 and S_2 are from coherent sources with zero phase difference.

[2.5 + 2.5 + 1 + 2 + 2 = 10]

(a) Consider the point P on the screen at distance y from $O(S_1O = S_2O; OP = y)$. Obtain the expression for the optical path difference Δx in terms of the refractive indices and the lengths mentioned in the problem.

 $\Delta x =$

(b) Now let P denote the central maximum. Obtain the expression for y as a function of time.

y=https://gofacademy.in

(c) Obtain the time (t_m) when central maximum is at point O, equidistant from S_1 and S_2 i. e. $S_1O = S_2O$.

 $t_m =$

(d) What is the speed (v) of the central maxima when it is at O.

https://gofacademy.in

(e) If monochromatic light of wavelength 6000 Å is used to illuminate the slits, determine the time interval (Δt) between two consecutive maxima at O before steady state is reached.

 $\Delta t =$

3. A Carnot engine cycle is shown in the Fig. (2). The cycle runs between temperatures $T_H = \alpha T_0$ and $T_L = T_0$ ($\alpha > 1$). Minimum and maximum volume at state 1 and state 3 are V_0 and nV_0 respectively. The cycle uses one mole of an ideal gas with $C_P/C_V = \gamma$. Here C_P and C_V are the specific heats at constant pressure and volume respectively. You must express all answers in terms of the given parameters { $\alpha, n, T_0, V_0, \gamma$ } and universal gas constant R.

[3+4+1=8]

Figure 2:

(a) List $\{P, V, T\}$ of all the four states.

$P_1 =$	$P_2 =$	$P_3 =$	$P_4 =$
$V_1 =$	$V_2 =$	$V_3 =$	$V_4 =$
$T_1 =$	$T_2 =$	$T_3 =$	$T_4 =$

(b) Calculate the work done by the engine in each process: W_{12} , W_{23} , W_{34} , W_{41} .

$W_{12} =$
$W_{23} =$
$W_{34} =$
$W_{41} =$

(c) Calculate Q, the heat absorbed in the cycle.

$$Q =$$

4. Consider a modification of Coulomb's law by replacing it with the force between two charges q_1 , q_2 separated by \vec{r} given by

$$\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0} \left[\frac{1}{r^2} + \frac{\beta}{r^3} \right] \hat{r}$$

where β is a constant. As far as possible express your answers in terms of the standard Bohr radius $a_o = 4\pi\epsilon_0 \hbar^2/me^2$ where the symbols have their usual meanings.

[3+4+1=8]

(a) Obtain the Bohr radius (r_n) for this modified law.

 $r_n =$

(b) Obtain the expression for the energy (E_n) for the n^{th} orbit of this modified law.

$E_n =$

(c) Take β to be small ($\beta = 0.1a_0$). Take the binding energy of the standard Bohr hydrogen atom to be 13.60 eV. Calculate the transition energy (ΔE) from n = 2to n = 1 for this modified law. For your calculation you may ignore terms of order β^2 and higher.

$\Delta E =$

5. Consider the motion of electrons in a metal in the presence of electric (\vec{E}) and magnetic (\vec{B}) fields. Due to collisions there arises a "retarding" force on the electron which is modeled by $m\vec{v}/\tau$ where m is the electron mass, \vec{v} its velocity and τ a typical collision time. Take the magnitude of the electron charge to be e (note e is positive). Ignore gravity.

[1+2+2.5+3+2+1.5=12]

(a) State the equation of motion of the electron.

(b) Consider the case $\vec{E} = 0$ and $\tau \to \infty$. Obtain the expression for the angular cyclotron frequency ω_c and its numerical value for the case B = 5.70 T.

https://gofacademy.in

 $\omega_c =$

Value of $\omega_c =$

(c) Consider the case of $\vec{B} = 0$ and $\vec{E} = E\hat{i}$. If *n* is the number of free (valence) electrons per unit volume, obtain the expression for the conductivity σ_0 of the sample. Obtain also the numerical value for the conductivity of Cu given that $n = 8.45 \times 10^{28} \text{ m}^{-3}$ and $\tau = 2.48 \times 10^{-14} \text{ s}$. We assume steady state i.e. the acceleration dies down and terminal speed is attained.

(d) Consider the case $\vec{E} = E_y \hat{j} + E_z \hat{k}$ ($E_x = 0$) and $\vec{B} = B \hat{k}$. Assume steady state and relate $\{j_x, j_y, j_z\}$ to $\{E_x E_y, E_z\}$. Here j's are the current densities (current per unit area).

https://g
$$j_x = \sigma_{xy}E_y + \sigma_{xz}E_z$$

 $j_y = \sigma_{yy}E_y + \sigma_{yz}E_z$ my in
 $j_z = \sigma_{zy}E_y + \sigma_{zz}E_z$

where σ_{ij} 's are to be written in terms of σ_0 , ω_c and τ .

(e) Sketch j_x (y-axis) versus B (x-axis).

(f) Taking Cu as an example, for what value of the magnetic field will j_x be a maximum?

6. Two blocks, say B and C, each of mass m are connected by a light spring of force constant k and natural length L. The whole system is resting on a frictionless table such that $x_B = 0$ and $x_C = L$, where x_B and x_C are the coordinates of the blocks B and C respectively. Another block (named A) of mass M, which is travelling at speed V_0 collides head-on with the block B at an instant t = 0 (see Fig. (3)).

[3+2+2+3=10]

Figure 3:

(a) Obtain the velocities of blocks A, B and C just after the collision at t = 0? Express the velocities in terms of V_0 and $\gamma = m/M$. Assume that the collision is elastic.

$$V_A =$$
 $V_B =$
 $V_C =$

(b) Draw free body diagrams for the blocks B and C after the collison and write down the equation of motion.

https://gofacademy.in

Equation of motion:

Free body diagram:

(c) For t > 0 the positions of the blocks are given by

$$x_B = \alpha t + \beta \sin(\omega t) \tag{1}$$

$$x_C = L + \alpha t - \beta \sin(\omega t) \tag{2}$$

Find ω in terms of m and k. Express α and β in terms of V_0, γ and ω . (For this part, ignore the motion of block A.)

(d) Obtain the condition on γ such that the block A will collide with the block B again at some time t > 0?

Condition on $\gamma:$

https://gofacademy.in

7. The Cubic Potential: Consider a particle of mass m moving in one dimension under the influence of potential energy

$$u(x) = \frac{m\omega^2 x^2}{2} - \delta x - \frac{\alpha x^3}{3}$$

Here ω , δ and α are real and positive.

[6+3=9]

(a) Sketch typical plots of u(x) and identify extrema if any.

https://gofacademy.in

(b) Consider the case where (in appropriate units) we have m = 1, $\omega = \sqrt{2}$, $\alpha = 1$ and $\delta = 1/2$. Sketch the potential energy u(x). If the total energy of the particle moving in this one-dimensional potential is E = 0 (in same units), discuss the motion of the particle in terms of allowed regions, boundedness and periodicity.

***** END OF THE QUESTION PAPER *****